期刊文献+

基于快速匹配算法的交通监控系统 被引量:3

A Traffic Monitoring System Based on Fast Matching Algorithm
在线阅读 下载PDF
导出
摘要 随着城市车辆的增多,交通变得越来越拥挤,所以实现实时的城市交通智能监控对于交通信息收集、规范化交通管理及城市规划等方面具有重要的意义。针对这个问题,文中以车辆闯红灯为例,提出了一种基于计算机视频检测技术的车辆运动监控方法。它采用了基于运动矢量的三步搜索算法,在系统实际运行中能根据目标运动方向自动排除许多人为和自然因素的干扰,确保了图像匹配的快速性和准确性,为对闯红灯等违章行驶车辆进行有效的视频跟踪抓拍和避免误拍提供了可靠保障。 With the increase of vehicle, the traffic in cities becomes crowded and crowded. So monitoring the state of road traffic has been significant for us to collect traffic information, standardize the management of traffic, city layout and so on. Here a detect vehicle motion method based on computer video technology is brought forward to solve this problem.An algorithm based on motion vector is adopted here. In practice it can eliminate a lot of disturbance aroused by man or nature, ensure us to take a shot of red light runner and other drive in peccancy correctly and effectively.
出处 《微机发展》 2004年第2期23-25,共3页 Microcomputer Development
  • 相关文献

参考文献2

  • 1[1]Yung N H C,Lai A H s.An Effective Video Analysis Method for Detecting Red Light Runners[J]. IEEE Transactions on Vehicular Technology, 2001,50(4):1 076-1 084.
  • 2[2]Lai A H S,Yung N H C.Vehicle-Type Identification Thr-ough Automated Virtual Loop Assignment and Block-Based Direction-Biased Motion Estimation[J]. IEEE Transactions on Intelligent Transportation Systems, 2000,1(2):86-92.

同被引文献15

  • 1王陈阳,周明全,耿国华.基于自适应背景模型运动目标检测[J].计算机技术与发展,2007,17(4):21-23. 被引量:19
  • 2Prati A, Mikic I,Trivedi M M, et al. Detecting moving shadows algorithms and evaluation[J].IEEE Transactions on Pattern Analysis and Machlng Intelligence, 2003,25(7) :918 - 923.
  • 3Gupte S, Masoud O, Robert F K, et al. Detection and Classification of Vehides [ J ]. IEEE Transactions on intelligent transportation systems, 2002,3 ( 1 ) : 37 - 47.
  • 4韩颖婕,张海,李琳怡.基于混合高斯背景建模的阴影抑制算法[C]∥第十四届全国图象图形学学术会议论文集.北京:清华大学出版社,2008:313-316.
  • 5Liu Hong, Li Jintao, Liu Qun, et al. shadow elimination in traffic video segmentation[ C] // IAPR Conference on Machine Vision Applications 2007. Tokyo,Japan: [s. n. ] ,2007.
  • 6Yung N H C , Lai A H S. An Effective Video Analysis Mettxxt for Detecting Red Light Runners [ J ].IEEE Transactions on Vehicular Technology ,2001,50(4) : 1076- 1084.
  • 7Lai A H S , Yung N H C . Vehicle - Type Identification Through Automated Virtual Loop Assignment and Block-Based Direction- Biased Motion Estimation[J] . IEEE Transactions on Intelligent Transportation Systems ,2000,1(2) :86 -92.
  • 8Guo D, Hwang Y C, Adrian Y C L, et al. Traffic monitoring u- sing short-long term background memory [ C ]//The IEEE 5 International Conference on Intelligent Transportation Sys-tems. [s. 1. ]: Is. n. ] ,2002:124-129.
  • 9Matsuo T, Kaneko Y, Matano M. Introduction of Intelligent Ve- hicle Detection Sensors[ C]//1999 IEEE/IEEJ/JSAI Interna- tional Conference. [ s. 1. ] : [ s. n. ] ,1999:709-713.
  • 10Beymer D, Philip M,Ccoifman B, et al. A real-time computer vision system for measureing traffic parameters[ C]//Proc. of IEEE conf. on computer vision and pattern recognition. [ s. 1. ] : [ s. n. ] , 1997:496-501.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部