期刊文献+

解不可压缩流动N-S方程的隐式SMAC方法 被引量:5

Implicit SMAC scheme for the incompressible Navier-Stokes equations
原文传递
导出
摘要 该文基于SMAC(SimplifiedMarkerandCell)方法推导出了的一种直接求解不可压缩N-S方程的隐式数值方法。求解的基本方程是任意曲线坐标系下以逆变速度为变量的N-S方程和椭圆型的压力Poisson方程。压力Poisson方程用TschebyscheffSLOR方法交替方向迭代求解。N-S方程数值离散时对流项采用了Chakravaythy-OsherTVD格式。用该方法计算后台阶流场的结果与经典的实验结果相当吻合,表明该方法是可靠的,在合适的边界条件下求解不但是稳定的,而且能有效抑制流网扭曲大的地方产生较大的非物理振荡误差。 An implicit finite-difference method was developed based on the SMAC (simplified marker and cell) scheme for directly solving the incompressible N-S equations. The method solves the N-S equations based on the contravariant velocities and the elliptical Poisson pressure equation in general curvilinear coordinates. The pressure equation was solved using the Tschebyscheff SLOR method with alternating computational directions. The Chakravarthy-Osher TVD scheme was used to discretize the convective terms in the N-S equations. The consistency of computational results relative to the classic experimental results for the backward-facing step flow indicates that the present implicit scheme with the proper boundary conditions is not only stable, but can also efficiently suppress spurious errors even when the elements are seriously skewed.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第2期270-273,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金重大研究计划资助项目(90210011) 国家重大技术装备研制项目(科技攻关)计划(ZZ02-03-01-02)
关键词 粘性不可压缩流体 SMAC方法 N-S方程 逆变速度 SLOR方法 TVD格式 incompressible viscous flow SMAC scheme N-S equations contravariant velocities SLOR method TVD scheme
  • 相关文献

参考文献6

  • 1Hariow F H, Welch J E. Numerical calculation of time dependent viscous incompressible flow of fluid with free surface [J]. Phys Fluids, 1965, 8(12): 2182- 2189,.
  • 2Amsden A A, Harlow F H. A simplified MAC technique for incompressible fluid flow calculations [J]. J Comp Phys, 1970, 6(2): 322-325.
  • 3Leonard B P. A survey of finite-differences with upwinding for numerical modeling of the incompressible convective diffusion equations [J]. Comput Tech in Trans and Turbu Flow, 1981, 2: 1-35.
  • 4Ikohagi T, Shin B R. Finite difference schemes for steady incompressible Navier-Stokes equations in general curvilinear coordinates [J]. Comput & Fluids, 1991, 19(3): 479-486.
  • 5Woznicki Z I, Jedrzejec H A. A new class of modified line SOR algorithms [J]. J Comput and Appl Math, 2001,131(1 -2): 89-142.
  • 6Armaly B F, Durst F, Pereira J C F, Schonung B. Experimental and theoretical investigation of backward-facing step flow [J]. J Fluid Mech, 1983, 127:473-496.

同被引文献29

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部