摘要
针对多输入多输出的非线性系统,设计了一个基于遗传算法的自适应分级模糊控制器。用分级控制实现了多输入多输出系统的降维,用遗传算法对各级模糊控制器的参数进行在线优化,实现了控制器参数的自调整。在Matlab环境下实现了该系统的编程,并以风力太阳能混合发电的能量管理系统为例,与常规分级模糊控制器进行了仿真比较。仿真结果表明,采用遗传算法进行参数寻优具有更好的稳定性,对多输入多输出非线性系统具有很好的控制效果。
Aim to MI/MO nonlinear system, designed a genetic-based self-adaptive hierarchical fuzzy controller. Reduced the dimensions of MI/MO system by hierarchical control, optimized on line the references of each level fuzzy controllers by genetic algorithm, made the controller's references self-adapted. Realized the system's programming in Matlab environment, and taking the energy management system of the hybrid wind-solar power system as an example, compared with the conventional hierarchical fuzzy controller. Simulation results show that the hierarchical fuzzy controller has a better stability using genetic algorithm to optimize the references, and has a good control effect for MIMO nonlinear system.
出处
《河南科学》
2004年第2期179-182,共4页
Henan Science
基金
广东省"十五"科技重大专项(A1050401)
关键词
遗传算法
模糊控制
多变量系统
自调整
genetic algorithm(GA)
fuzzy control(FC)
multiple variable system
self-adjust