摘要
利用建立不等式的降维法 ,证明了一组对称函数的不等式 .主要结果是 :对于I=(0 ,1) ,g(t) =1t-t,(x1 ,… ,xn)∈In,Em(x1 ,… ,xn)是初等对称函数 ,记s =∑ni=1xi, m∈N , n≥m且n≥ 3,若 0 <s≤ 1,则Em[g(x1 ) ,… ,g(xn) ]≥Cmn[g(s n) ]m .
By means of the method of descending dimension for establishing inequalities(see theorem 1 and it's corollaries),This paper proves a class of inequalities for symmetric functions.The main result is:for I=(0,1),g(t)=1t-t,(x-1,…,x-n)∈I+n,E-m(x-1,…,x-n) is elementary symmetric function,denote s=∑ni=1x-i,m∈N,n≥m and n≥3,if 0<s≤1,then E-n[g(x-1),…,g(x-n)]≥C+m-n[g(s/n)]+m.
出处
《首都师范大学学报(自然科学版)》
2004年第1期7-11,共5页
Journal of Capital Normal University:Natural Science Edition
关键词
不等式
降维法
初等对称函数
对称集
凸集
inequality, symmetric function, elementary symmetric function, symmetric set, convex set, method of descending dimension.