期刊文献+

一种基于人眼视觉特性的图像质量评价 被引量:57

A Criterion of Image Quality Assessment Based on Property of HVS
在线阅读 下载PDF
导出
摘要 图像质量评价的研究已成为图像信息工程的基础技术之一。由于图像的最终接受者是人 ,所以评价图像质量的关键在于其是否符合人类视觉系统特性。为了建立一种新的符合人眼视觉特性的图像质量评价方法 ,利用小波变换与人类视觉系统的多通道特性相匹配的特点 ,结合对比敏感度函数的带通特性 ,同时考虑计算的复杂性 ,给出了一种与人对图像质量评价保持良好一致的图像质量评价算法。实验结果表明 ,其评价结果与主观评价方法平均评价分数的相关系数达 0 .95 ,而对应的客观评价方法峰值信噪比与平均评价分数的相关系数为 0 .81。 Research on image quality assessment is meaningful for image processing projects. Since human being is the final receiver of the image, the key point of the image assessment is that it should match the characteristics of HVS(human visual system). In this paper, a novel image quality assessment according with perceptual property of human eye is proposed. In this algorithm, wavelet transform is used because it matches well with the multi-channel model of HVS, bandpass property of CSF(contrast sensitivity function) is integrated with, and the complexity of the computation is considered. The simulation results show that the correlation coefficient between the algorithm and subjective MOS(mean opinion score) is 0 95, but the correlation coefficient obtained by the PSNR(Peak signal noise ratio) measure is 0.81.
出处 《中国图象图形学报(A辑)》 CSCD 北大核心 2004年第2期190-194,共5页 Journal of Image and Graphics
关键词 图像质量评价 小波变换 人类视觉系统 对比敏感度函数 图像处理 image quality assessment, wavelet transform, human visual system, contrast sensitivity function
  • 相关文献

参考文献22

  • 1CCIR. Method for the subjective assessment of the quality of television pictures recommendation 500-3 [A ]. In:Recommendations and Reports of the CCIR[S], International Telecommunication Union,Geneva, 1986.
  • 2Eskicioglu A M, Fisher P S. Image quality measures and their performance[J]. IEEE Transactions on Communication, 1995,43(12) : 2959-2965.
  • 3Marmolin H. Subjective MSE measures[J]. IEEE Transactions on Systems, Man and Cybernetics, 1986,16(3) : 486-489.
  • 4Hall C F, Hall E L. A nonlinear model for the spatial characteristics of the human visual system [J].IEEE Transactions Systems Manunication Cybernet, 1977, 7:161-170.
  • 5Crranrath D J. The role of human visual models in image processing[J]. Proceeding of IEEE,1981,69(5) :552-561.
  • 6Daly S. The visible differences predictor: An algorithm for the assessment of image fidelity [A]. In: Proceedings of SHE,Symposium on Model-based Vision[C], Boston, USA, 1992,1616:2-15.
  • 7Lai Yung-kai, Jay Kuo C C. A harr wavelet approach to compressed image quality measurement [ J]. Journal of Visual Communication and Image representation,2000,11(1):17-40.
  • 8Chin F Z C, Xydeas C S. Dual-mode image quality assessment metric [A]. In: IEEE Region 8 International Symposium on Video/Image Processing and Multimedia Communications [C],Zadar, Croatia, 2002,6:137-140.
  • 9Naranjan Damer-venkata, Thomas D. Kitt, Wilsons, et al.Image quality assessment based on a degradation model [J].IEEE Transactions. on Image Proceedings, 2000,9 (4) : 636-650.
  • 10Karunasekera S A, Kingsburg N G. A distortion measure for blocking artifacts in images based on human visual sensitivity[J]. IEEE Transactions on Image Proceesing, 1995,4(6) : 713-724.

同被引文献467

引证文献57

二级引证文献262

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部