期刊文献+

增量决策树算法及复杂度分析 被引量:9

An Incremental Alogrithm for Inducing Decision Trees and Its Complexity
在线阅读 下载PDF
导出
摘要 介绍了增量决策树算法的基本原理,并从实例费用和信息熵费用两个角度出发,对增量决策树算法的复杂度进行分析。通过实例说明,增量决策树算法能够构造出与ID3算法形态基本相同的决策树。 An incremental algorithm for inducing decision trees is presented based on ID3 algorithm. The complexity of the incremental algorithm is analyzed in terms of instance-count additions and e-score calculations. The same training instance shows that the incremental algorithm can induce decision trees equivalent to those forms by ID3 algorithm.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2004年第2期202-205,共4页 Journal of University of Science and Technology Beijing
基金 国家自然科学基金(No.50074005)
关键词 复杂度分析 增量决策树算法 实例费用 信息熵费用 训练集 decision trees incremental algorithm complexity
  • 相关文献

参考文献8

  • 1Schlimmer J C, Fisher D. A case study of incremental concept induction [A]. Proceedings of AAAI-86 [C]. Philadelphia, 1986
  • 2Utgoff P E. Incremental Induction of Decision Trees [J].Mach Learn, 1989(4): 161
  • 3UtgoffP E. An improved algorithm for incremental induction of decision trees [A]. Proceedings of the Eleventh Int.Conference on Machine Learning [C]. New Jersey, 1994.318
  • 4Kalles D, Morris T. Efficient incremental induction of decision trees [J]. Mach Learn, 1996(1): 1
  • 5Kalles D, Papagelis A. Stable decision trees: Using local anarchy for efficient incremental learning [J]. Int J Artif Intell Tools, 2000, 9(1): 79
  • 6Piater J H, Riseman E M. Interactively training pixel classifiers [J]. Int J Pattern Recognit Artif Intell, 1999, 13(2):171
  • 7Elomaa T, Kaariainen M. An analysis of reduced error pruning[J]. J ArtifIntell Res, 2001,15:163
  • 8Wang X Z, Chen B, Qian G L, et al. On the optimization of fuzzy decision trees [J]. Fuzzy Sets Syst, 2000, 112: 117

同被引文献35

引证文献9

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部