期刊文献+

基于支持向量机和色度矩的植物病害识别研究 被引量:37

Study on Plant Disease Recognition Using Support Vector Machine and Chromaticity Moments
在线阅读 下载PDF
导出
摘要 针对植物病害彩色纹理图像的特点 ,提出将支持向量机和色度矩分析方法相结合应用于植物病害识别中。首先利用色度矩提取植物病害叶片的特征向量 ,然后利用支持向量机分类方法进行病害的识别。黄瓜病害纹理图像识别实验分析表明 ,利用色度矩提取病害彩色纹理图像特征简便、快捷、分类效果好 ;支持向量机分类方法在病害分类时训练样本较少 ,具有良好的分类能力和泛化能力 ,适合于植物病害的分类。不同分类核函数的相互比较分析表明 ,线性核函数最适于植物病害的分类识别。 According to the features of color texture image of plant disease,recognition of plant disease using support vector machine (SVM) and chromaticity moments was introduced. At first,extracting features of chromaticity moments was done,then classification method of SVM for recognition of plant disease was discussed. Experimentation with cucumber disease was conducted and the results proved that chromaticity moments is simple,efficient,and effective for recognition of plant disease image,and the SVM method has excellent classification and generalization ability in solving learning problem with small training set of sample,and is fit for classification of plant disease. The comparison of different kernel functions for SVM shows that liner kernel function is most suitable for shape recognition of plant disease spot.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2004年第3期95-98,共4页 Transactions of the Chinese Society for Agricultural Machinery
关键词 支持向量机 色度矩 植物病害 识别 纹理图像 线性核函数 Plant diseases,Texture image,Support vector machine,Chromaticity moments
  • 相关文献

参考文献5

  • 1George Paschos. Fast color texture recognition using chromaticity moments. Pattern Recognition Letters,2000,21:837~841
  • 2Burges C J C. A totorial on support vector machines for pattern recognition . Data Mining and Knowledge Discovery, 1998, 2(2):121~169
  • 3ladimir N Vapnik 著. 统计学习理论的本质. 张学工译.北京:清华大学出版社,2000.
  • 4张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2288
  • 5Cheng H D, Jiang X H, Sun Y, et al. Color image segmentation: advances and prospects. Pattern Recognition, 2001, 34:2259~2281

二级参考文献1

共引文献2287

同被引文献529

引证文献37

二级引证文献709

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部