期刊文献+

双材料平面斜裂纹问题超奇异积分方程方法 被引量:8

HYPER-SINGULAR INTEGRAL EQUATION METHOD FOR OBLIQUE CRACK IN PLANE BI-MATERIAL
在线阅读 下载PDF
导出
摘要 由双材料平面问题的弹性力学基本解 ,应用互等功定律和坐标变换 ,得到双材料平面任意斜裂纹问题位移场及应力分量表达式 ,经代入裂纹岸应力边界条件 ,获得以裂纹岸位移间断作为基本未知量的超奇异积分方程组 ;通过适当的积分变换 ,用有限部积分原理处理超奇异积分 ,建立该问题的相应数值算法。文中对任意位置的裂纹问题进行计算 ,并较为系统地分析界面对裂纹应力强度因子的影响 ,当裂纹垂直或平行于双材料界面时 。 The problem of an oblique crack in a plane bi-material is considered. Based on the fundamental solution of elasticity for two-half plane, the stresses and the displacements of the problem are derived by use of Betti's reciprocal theorem and the coordinate change. In consideration of the stress boundary conditions of the crack, the hyper-singular integral equations to describe the crack problem are gained. Further more, by use of a suitable integral transformation and the finite-part integral theory, a numerical method used to solve the hyper-singular integral equations is established. Finally, some examples are calculated, in which the location and direction of the crack and the different shear elastic modulus ratios are considered. When the crack is parallel, or perpendicular to the interface of the bi-material, the calculated result is consistent with the results in literatures.
出处 《机械强度》 CAS CSCD 北大核心 2004年第3期326-331,共6页 Journal of Mechanical Strength
基金 河南省杰出青年科学基金资助项目 (0 2 1 2 0 0 1 80 0 )~~
关键词 双材料 斜裂纹 超奇异积分方程 应力强度因子 Bi-material Oblique crack Hyper-singular integral equation Stress intensity factor
  • 相关文献

参考文献6

  • 1Dundurs J, Hetenyi M. The elastic plane with a circular insert, loaded by a radial force. J. Appl. Mech., 1961, (1): 103 ~ 112.
  • 2Hetenyi M, Dundurs J. The elastic plane with a circular insert, loaded by atangentially directed force. J. Appl. Mech. , 1962, (2) :362 ~ 368.
  • 3乐金朝 冯新 韩连元.双材料平面裂纹问题的超奇异积分方程方法[J].固体力学学报,1999,20:34-37.
  • 4杜云海,徐建国,温玲君,韩连元.双相材料平行于界面裂纹问题的超奇异积分方程法[J].机械强度,2003,25(2):174-177. 被引量:9
  • 5Wang X D, Meguid S A. On the general treatment of an oblique crack near a bi-material interface under antiplane loading. International Journal of Solids and Structures, 1996, 33(17) :2485 ~ 2500.
  • 6高闯,汤任基.两相材料倾斜裂纹的界面应力场[J].上海交通大学学报,2001,35(10):1491-1496. 被引量:7

二级参考文献13

  • 1胡互让,吴承平.一种预测界面裂纹形成的新方法[J].应用数学和力学,1997,18(1):37-44. 被引量:1
  • 2Li J,Eur J Mech A:Solids,1997年,16卷,5期,795页
  • 3Chen Daiheng,Int J Fracture,1997年,88卷,393页
  • 4Wang X D,Int J Solid Struct,1996年,33卷,17期,2485页
  • 5Wang Weichung,Eng Fract Mech,1994年,49卷,5期,671页
  • 6乐金朝 冯新 韩连元.双材料平面裂纹问题的超奇异积分方程方法[J].固体力学学报,1999,20:34-37.
  • 7Ioakimids N I. A natural approach to the introduction of finite-part integrals into crack problems of 3-dimensional elasticity. Eng. Fracture Meck.,1982, 16:669 ~ 673.
  • 8Ioakimids N I. Application of finite-part integrals to the singular integral equations of crack problems in plane and 3-dimensional elasticity. Acta Mech., 1987, 26:783 ~ 788.
  • 9Erdogan. F. Stress distribution in bonded dissimilar materials with cracks.J.Appl. Mech., 1965: 403~410.
  • 10Cook, T S. Erdogan F. Stress in bonded materials with a crack perpendicular to the interface. J. Eng. Sci., 1972, 10: 677~697.

共引文献15

同被引文献67

引证文献8

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部