期刊文献+

基于改进遗传神经网络的微硅加速度传感器动态补偿研究 被引量:5

Study on dynamic compensation method based on improved genetic neural network for micro -silicon accelerometer
在线阅读 下载PDF
导出
摘要 比较遗传算法与神经网络的特点 ,并对将遗传算法用于函数连接型神经网络 (FLNN)的优点进行了研究 .对遗传算法的编码方法、交换和变异操作做了改进 ,提出了一种融合改进遗传算法的FLNN用于微硅加速度传感器动态性能补偿的新方法 .该方法不依赖于传感器的动态模型 ,可根据传感器的动态响应数据 ,建立补偿模型 ,采用改进遗传神经网络搜索和优化补偿模型参数 ,既保留了遗传算法的全局搜索能力 ,又具有神经网络的鲁棒性和自学习能力 .介绍补偿原理及算法 ,给出动态补偿网络的数学模型 .结果表明 ,该补偿方法能克服FLNN收敛速度慢、容易陷入局部极小的缺陷 ,具有网络训练速度快、实时性好、良好的全局搜索能力、精度高。 The characteristics of neural network (NN) and genetic algorithm (GA) are described. The advantages of the application of genetic algorithm to the functional link neural networks (FLNN) are discussed. The coding method and the operator of crossover and mutation for GA are improved. A kind of neural networks compensation method is proposed in which genetic algorithm and neural network are mixed for micro-silicon accelerometer. In this method, a dynamic compensation model can be set up according to measurement data of dynamic response of micro-silicon accelerometer without knowing its dynamic model. The dynamic compensation model parameters are trained by improved genetic neural network. So the method remains both the global searching ability of GA and the robustness and self-learning ability of NN. The compensation principle and algorithm are introduced and the mathematical model is founded. The results show that the proposed method can overcome the shortcoming of FLNN, such as slow speed in training and easy convergence to the local minimum points, and has the advantages of fast training process, good real time, good global searching ability, high precision, strong robustness and easy realization of dynamic compensation device.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第4期455-458,共4页 Journal of Southeast University:Natural Science Edition
关键词 微硅加速度传感器 函数连接型神经网络 动态补偿 遗传算法 Dynamics Genetic algorithms Motion compensation Neural networks Silicon
  • 相关文献

参考文献10

二级参考文献21

  • 1黄钦俊,王效葵,李行善,张东红,刘国俊.力传感器的动态重复性、线性度与性能改进的研究[J].计量学报,1995,16(1):58-67. 被引量:11
  • 2冯之敬,刘金凌,潘尚峰,王先逵,袁哲俊.测量与控制系统中非线性特性的不失真线性化方法[J].清华大学学报(自然科学版),1996,36(8):18-23. 被引量:11
  • 3J. Barry Gomm, Ding Li Yu. Selecting radial basis function network centers with recursive orthogonal least squares training[J]. IEEE Trans.Neural Networks,2000,11 (2): 306-314.
  • 4Hu Niansu, Zhao Yu, Wu Junfen The simulation of failure parameter in a real time monitoring and analyzing system based on RBFN[A]. Proceedings of 2002 International Conference on Machine Leanring and Cybernetics [C]. 2002(2): 655-658.
  • 5[2]Antonio B,Gaetano C. Optimal design of multivariate sensor[J]. Measure Sci and Tech. 1994,4(5):319~322.
  • 6[4]Dempsey G 1, Alig J S, et al. Control Sensor Linearization using Artificial Neural Net-work[J ]. Analog Integrated Circuits and Signal Processing. 1997,13(3):321~322.
  • 7[7]Vladik K. Genetic Algorithms: What Fitness Scaling is Optimal[M]. Cybernetic and System , 1993(24), 9~26.
  • 8黄长艺,计量技术,1981年,5期,226页
  • 9徐科军,合肥工业大学学报,1997年,20卷,3期,1页
  • 10金篆苌 王明时.现代传感器[M].北京:电子出版社,1995..

共引文献121

同被引文献27

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部