摘要
随着信息科学技术的迅猛发展,信息量越来越大,对信息处理的理论技术的要求也就越高,原有的传统信息处理方法不能够完全满足人们的要求。因此对压缩感知理论的研究是十分必要的。而压缩感知理论中最核心的部分就是信号重构。本文用极大熵函数构造 范数的光滑逼近函数,进而实现信号重构,并提出了基于最小 范数问题的MEFM算法,证明了算法的收敛性。数值实验表明验证了新算法是十分可行有效的信号重构方法。
With the rapid development of information science and technology, the amount of information becomes huge. The demand of technology on information processing will be high and the original traditional information processing methods cannot fully meet the requirements of people. So the study of compression perception theory is very important. The main content of this thesis is the reconstruction algorithm, which has played an important role in the theory of the compressed sensing. In order to overcome the nonsmooth problem in  norm, this paper proposed a new Maximum Entropy Function Method (MEFM) to solve the  optimization problem and proved the convergence of the new algorithm. Numerical experiments demonstrated that the new algorithm is feasible and effective in signal reconstruction.
出处
《应用数学进展》
2014年第3期140-148,共9页
Advances in Applied Mathematics