期刊文献+

一种提高SVM分类能力的同步优化算法

A Synchronous Optimization Algorithm for Increasing Accuracy of SVM Classification
在线阅读 下载PDF
导出
摘要 近年来,支持向量机(SVM)理论广泛应用于模式分类,然而影响其分类准确率的两个主要因素特征选择和参数优化又是相互影响和制约的。文章提出一种BA + SVM算法,利用蝙蝠算法(BA)来同步完成SVM的参数优化和输入数据的特征属性选择,提高了SVM的分类能力。设计的三种实验方式在10个测试数据集上实验结果表明,BA + SVM同步优化算法与单一进行参数优化或单一进行特征选择算法相比,具有输入特征少分类准确率高的优势。 Support vector machines (SVM), which is a popular method for pattern classification, has been recently adopted in range of problems. In training procedure of SVM, feature selection and parameter optimization are two main factors that impact on classification accuracy. In order to improve the classification accuracy by optimizing parameter and choosing feature subset for SVM, a new algorithm is proposed through combining Bat Algorithm (BA) with SVM, termed BA + SVM. For assessing the performance of BA + SVM, 10 public data-sets are employed to test the classification accuracy rate. Compared with grid algorithm, conventional parameter optimization method, our study concludes that BA + SVM has a higher classification accuracy with fewer input features for support vector classification.
作者 何凡 卢常景
出处 《应用数学进展》 2017年第9期1073-1081,共9页 Advances in Applied Mathematics
基金 国家自然科学基金项目(11301492) 中国地质大学(武汉)基础研究基金项目(CUGL140420)。
  • 相关文献

参考文献1

二级参考文献12

  • 1高海华,杨辉华,王行愚.基于BPSO-SVM的网络入侵特征选择和检测[J].计算机工程,2006,32(8):37-39. 被引量:20
  • 2陈果.基于遗传算法的支持向量机分类器模型参数优化[J].机械科学与技术,2007,26(3):347-350. 被引量:40
  • 3俞研,黄皓.基于改进多目标遗传算法的入侵检测集成方法(英文)[J].软件学报,2007,18(6):1369-1378. 被引量:21
  • 4Denning D E. An Intrusion Detection Model [ J ]. 1EEE Transaction on Software Engineering,2003,13 ( 2 ) : 222 - 232.
  • 5I)urga Prasad Muni, Nikhil R Pal, Jyntirmoy I)m. Genetie prngram- ruing for simultaneous fealure selection and classifier design[J]. IEEE Transactions on Systems, Mall, anti Cybernetics-Parl B, Februat2, 2006, 36(1):106 117.
  • 6Kennedy J, Eberharl R C. Particle swarm optimization [ C ]//Proc of IEEE International Conlrence on Neural Networks, USA: IEEE Press, 1995:1942 1948.
  • 7Montemanni R, Smitt, D H, Gambardclla 1, M. Ant colony systems for large sequential ordering problems[ C //Pmeeedings of the 2007 IEEE Swarm Intelligence Symposium, 2007 : 478 - 482.
  • 8张昊,陶然,乍志勇.基于KNN算法及禁忌搜索铃法的特征选择力法入侵榆测中的应用研究[J].电子学报,2007,37(7):16281632.
  • 9Sung A H. Identity., Important Features fir Intmsiun I)electiou Using Support Vector Machines and Neural Networks [ C ]//IEEE Pruceed- ings uf tile 2003 Symposium on Applicalion and the Internet, 2003: 209 -217.
  • 10邓乃扬,田英杰.数据挖捌中的新方法一支持向量机[M].北京:科学出版社,2004.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部