期刊文献+

二维边值问题有限元离散系统病态问题的病因抑制方法

A Method of Inhibiting Pathogeny for Ill-Condition Problems of the Finite Element Discrete Systems of 2D Boundary Value Problems
在线阅读 下载PDF
导出
摘要 讨论二维Poisson方程边值问题离散系统的病态问题,针对三角剖分和和四角剖分,基于Lagrange形函数形成有限元离散系统的病态问题,提出病因抑制方法;给出该系统的病态结构、病态因子、去病因子;利用病态因子估计离散系统的条件数;利用去病因子为最优预条件子,精准抑制病态发作,该预条件子的使用,几乎不增加求解的计算量,预处理后离散系统保持正定对称,条件数关于离散系统规模一致有界。 The ill conditioned problem of the finite element discrete system based on triangular subdivision, tetragonal subdivision and Lagrange shape function for 2D Poisson equation boundary value problem is discussed. The method of inhibiting pathogeny was proposed. The ill condition structure, ill condition factor and ill elimination factor of the system were given;and the condition number of the equation was estimated by the ill conditioned factor. The ill elimination factor was used as the optimal preconditioner to precisely suppress the ill condition. The use of the preconditioner hardly increases the calculation of iteration. After the pretreatment, the equations keep positive definite symmetry and the condition number is uniformly bounded with respect to the scale of equations.
出处 《应用数学进展》 2021年第12期4162-4171,共10页 Advances in Applied Mathematics
  • 相关文献

参考文献13

二级参考文献87

  • 1戴民,郭艳玲,石济民,王瑞河.松弛ILU预处理器在油藏数值模拟软件中的移植[J].数值计算与计算机应用,2004,25(3):183-191. 被引量:2
  • 2李晓梅,吴建平.稀疏线性方程组不完全分解预条件方法[J].计算机工程与科学,2006,28(8):59-62. 被引量:7
  • 3Kohno T, et al. Improving the modified iterative methods for Z-matrice. Linear Algebra Appl, 1997, 267: 113 -123.
  • 4Ludwig Eisner, Andreas Frommer, Reinhard Nabben, etc. Conditions for strict inequality in comparisons of spectral radii of splittings of different matrices. Linear Algebra Appl, 2003, 363:65- 80.
  • 5Abraham Berman, Robert J. Plemmons, Nonnegative Matrices in the Mathematical Science. New York: Academic Press, 1979.
  • 6Li Wen, Sun W W. Modified Gauss-Seidel methods and .Jacobi type methods for Z-matrices. Linear Algebra Appl, 2000, 317:223 -240.
  • 7Li Wen. Comparison results for solving preconditioned linear systems. Journal of Computational and Applied Mathematics, 2005, 176:319- 329.
  • 8Wu Meijun, Wang Li, Song Yongzhong. Preconditioned AOR iterative method for linear systems. Applied Numerical Mathematics, 2007, 57:672 -685.
  • 9Gunawardena A D, Jain S K, Snyder L. Modified interative methods for consistent linear systme. Linear Algebra and its Application, 1991, 154-156:123 -143.
  • 10Evans D J, Martins M M, Trigo M E. The AOR iterative method for new preconditioned linear systems. Comput Appl Math, 2001, 132:461 -466.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部