摘要
针对一阶智能体和二阶智能体组成的异构多智能体系统,在无向通讯拓扑下研究了具有输入饱和与非输入饱和的异构非线性多智能体系统的一致性问题。首先,分别提出了基于牵制控制和事件触发控制的一致性控制协议,其次,通过对每个智能体设计事件触发条件,当满足事件触发条件时,智能体才向周围的邻居传递自身的状态信息和更新控制器,且每个智能体只在自己的触发时刻进行传递和更新。然后利用图论、Lyapunov稳定性理论和LaSalle不变集理论,证明了在满足某些条件下,该系统不仅达到了期望的一致性状态,而且减少了控制器的更新次数,有效地节省了通讯资源。最后,通过数值模拟验证了理论的正确性。
The consensus problem of heterogeneous nonlinear multi-agent systems with and without input saturation is investigated under the undirected communication topology for heterogeneous mul-ti-agent systems composed of first-order agents and second-order agents. First, consensus control protocols based on pinning control and event-triggered control are proposed respectively, and sec-ond, by designing event-triggered conditions for each agent, the agent transmits its own state in-formation and updates its controller to its surrounding neighbors only when the event-triggered conditions are satisfied, and each agent transmits and updates only at its own triggering moments. Then using graph theory, Lyapunov stability theory and LaSalle invariance principle, it is proved that the systems not only achieve the desired consensus state, but also reduce the number of con-troller updates and effectively save the communication resources under the fulfillment of certain conditions. Finally, the correctness of the theory is verified by numerical simulation.
出处
《应用数学进展》
2023年第9期3872-3885,共14页
Advances in Applied Mathematics