期刊文献+

定义于单叶双曲面上的多元切触插值问题研究

Research on Multivariate Contact Interpolation Defined on Hyperboloid of One Sheet
在线阅读 下载PDF
导出
摘要 多元插值问题一直是计算数学专业研究领域的一个重要的研究方向,与生产实践相结合更是成为主流趋势。本文针对在建筑学领域中常用的单叶双曲面来研究其上的多元函数切触插值问题。首先给出了定义于单叶双曲面上的多元切触插值定义以及其上正则性问题的提法,对插值条件组的拓扑结构进行了较为深入的研究,得到了定义于单叶双曲面上的切触插值正则条件组的判定定理及两种构造方法,最后给出了定理证明,并以实验算例验证了算法的有效性。 The multivariate interpolation problem has been an important research direction in the research field of computational mathematics, and the combination with production practice has become a mainstream trend. In this paper, we study the multivariate tangent interpolation problem on hyperboloid of one sheet, which is commonly used in the field of architecture. Firstly, the definition of multivariate contact interpolation on hyperboloid of one sheet and the formulation of the regularity problem are given, the topology of the interpolation condition group is studied in depth, and the decision theorem of the contact interpolation condition group on hyperboloid of one sheet and the two constructive methods are obtained, and finally, the theorem proof is given, and the validity of the algorithm is verified by the experimental example.
出处 《应用数学进展》 2024年第5期2078-2086,共9页 Advances in Applied Mathematics
  • 相关文献

参考文献5

二级参考文献28

  • 1张步林.关于二次锥面的讨论[J].成都纺织高等专科学校学报,2007,24(2):33-35. 被引量:2
  • 2梁学章,张洁琳,崔利宏.多元Lagrange插值与Cayley-Bacharach定理[J].高等学校计算数学学报,2005,27(S1):276-281. 被引量:13
  • 3梁学章,张明,张洁琳,崔利宏.高维空间中代数流形上多项式空间的维数与Lagrange插值适定结点组的构造[J].吉林大学学报(理学版),2006,44(3):309-317. 被引量:9
  • 4梁学章.二元插值的适定结点组与迭加插值法[J].吉林大学自然科学学报,1979,(1):27-32.
  • 5Carnicer J M, Gasca M. Multivariate polynomial interpolation: Some new trends. Monogr Real Acad Cienc Zaragoza, 2010, 33:197 208.
  • 6梁学章.关于多元函数的插值与逼近.高等学校计算数学学报,1979,1:123-124.
  • 7Liang X Z, Lv C M, Feng R Z. Properly posed sets of nodes for multivariate Lagrange interpolation in Cs. SIAM J Numer Anal, 2001, 30:581-595.
  • 8Liang X Z, Wang R H, Cui L H, et al. Some researches on trivariate Lagrange interpolation. J Comput Appl Math, 2006, 195:192-205.
  • 9Liang X Z, Zhang J L, Zhang M, et al. Superposition interpolation process in Cn. Appl Math Comput, 2009, 215: 227 -234.
  • 10de Boor C, Ron A. On mutivariate polynomial interpolation. Constr Approx, 1990, 6:287-302.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部