期刊文献+

基于改进随机森林的肝硬化诊断预测研究 被引量:1

Diagnostic Prediction of Liver Cirrhosis Based on Improved Random Forest
在线阅读 下载PDF
导出
摘要 当前机器学习在医疗诊断领域得到广泛应用。本文基于改进的随机森林算法,利用患者进行各项检查获得的大量数据,对照肝硬化指标,对患者数据进行分析处理,提出一种基于患者检查数据的肝硬化预测方法。该方法改进传统诊断技术,采用随机森林算法,利用其使用随机因子来控制数据多样性的特点,引入深度限制指标,提高算法对数据的判断和识别能力,增强预测的准确性。本文采用人体测量学组成的数据集进行实验,结果表明该方法预测准确率达到90%以上。 Machine learning is widely applied in the field of medical diagnosis currently. Based on the improved random forest algorithm, a prediction method for liver cirrhosis diagnosis is proposed, in which the patients’ data with liver cirrhosis indicators is analyzed and processed by means of the large amount of data obtained by patients for each examination and liver cirrhosis indicators. The method of the paper has improved the traditional diagnosis technology, adopted the random forest algorithm, used its random factor to control the characteristics of data diversity, and introduced the depth limit index. And it has improved the judgment and recognition ability of the data, and enhanced the prediction accuracy. In this paper, the data set composed of anthropometrics is used for experiments. The results show that the prediction accuracy of this method is over 90%.
出处 《计算机科学与应用》 2019年第10期1928-1938,共11页 Computer Science and Application
基金 黑龙江省教育厅基本业务专项理工面上项目(135209234) 齐齐哈尔市基金项目(GYGG-201913).
  • 相关文献

参考文献3

二级参考文献27

  • 1何鸣,李国正,袁捷,吴耿锋.基于主成份分析的Bagging集成学习方法[J].上海大学学报(自然科学版),2006,12(4):415-418. 被引量:8
  • 2虞凡,杨利英,覃征.异构集成学习中的观察学习机制研究(英文)[J].广西师范大学学报(自然科学版),2006,24(4):54-57. 被引量:3
  • 3何鸣,李国正,袁捷.医学诊断中集成学习技术的研究[J].计算机工程与应用,2006,42(28):218-220. 被引量:5
  • 4Liver Disease Committee,Chinese Association of Integrative Medicine..肝纤维化中西医结合诊疗指南[J].中华肝脏病杂志,2006,14(11):866-870. 被引量:271
  • 5FRIEDMAN SL. Molecular regplation of hepatic fibrosis, an integrated cellular response to tissue injury[J]. J Bio Chem, 2000, 275:2247-2250.
  • 6CALVARUSO V, CRAXi A. Fibrosis in chronic viral hepatitis [J]. Best Pract Res Clin Gastroenterol, 2011, 25(2) 219 -230.
  • 7DIENSTAG J. The role of liver biopsy in chronic hepatitis C [J]. Hepatology, 2002,36: s152-s160.
  • 8DEGOS F, PEREZ P, ROCHE of FibroScan and comparison B, et al. Diagnostic accuracy to liver fibrosis biomarkers in chronic viral hepatitis: A multicenter prospective study (the FIBROSTIC study) J]. J Hepatol, 2010, 53(6): 1013 - 1021.
  • 9BROWN A, GOODMAN Z. Hepatitis B - associated fibrosis and fibrosis/cirrhosis regression with nucleoside and nucleo- tide analogs[J]. Expert Rev Gastroenterol Hepatol, 2012, 6 (2) . 187 -198.
  • 10ELLIS EL, MANN DA. Clinical evidence for the regression of liver fibrosis[J]. J Hepatol, 2012, 56(5); 1171 -1180.

共引文献24

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部