期刊文献+

考虑微凸体相互作用及硬度变化的加卸载接触分形模型

Fractal Model of Loading-Unloading Contact Considering Asperity Interaction and Hardness Changes
在线阅读 下载PDF
导出
摘要 基于分形理论,建立了考虑微凸体的相互作用及硬度变化的加卸载接触模型。推导了单个微凸体在加卸载过程中接触面积、接触载荷、表面分离、变形量的关系式。根据接触面积的分布密度函数,推导粗糙表面的实际接触特性关系式,并通过数值计算分析了相关参数对接触特性的影响。结果表明:单个微凸体发生弹性变形时,卸载过程与加载过程完全一致;发生弹塑性变形时,随着微凸体加载结束时的变形量的增大,在相同接触载荷下,卸载时的接触面积越大,且不能完全回复;发生完全塑性变形时,微凸体在卸载过程中不回复。随着分形维度D的增大、尺度系数G的减小,粗糙表面越光滑,在相同接触载荷下,接触面积越大,表面分离减小。 Based on fractal theory, a loading-unloading contact model considering the interaction of asperities and the change of hardness is established. The relationship between contact area, contact load, sur-face separation and deformation of a single asperity during loading and unloading is derived. Ac-cording to the distribution density function of the contact area, the actual contact characteristics of rough surfaces are derived, and the influence of relevant parameters on the contact characteristics is analyzed through numerical calculation. The results show that the unloading process is consistent with the loading process when a single asperity undergoes elastic deformation;when elastic-plastic deformation occurs, with the increase of deformation at the end of loading, the contact area at un-loading is larger under the same contact load, and cannot be fully recovered;when complete plastic deformation occurs, the asperities do not recover during unloading. With the increase of fractal di-mension D and fractal roughness G, the smoother the rough surface is, the larger the contact area is, and the smaller the surface separation is under the same contact load.
出处 《建模与仿真》 2023年第1期290-303,共14页 Modeling and Simulation
  • 相关文献

参考文献9

二级参考文献100

  • 1黄玉美,付卫平.结合面法向动态特性参数研究[J].机械工程学报,1993,29(3):74-78. 被引量:48
  • 2马争,桂长林.评定磨合表面的最佳形貌参数[J].摩擦学学报,1995,15(2):133-137. 被引量:10
  • 3赵永武,吕彦明,蒋建忠.新的粗糙表面弹塑性接触模型[J].机械工程学报,2007,43(3):95-101. 被引量:111
  • 4Chang W R, Etsion I, Bogy D B. Static friction coefficient model for metallic rough surfaces [ J ]. ASME Journal of Tribology, 1985, 110(1) :57 -63.
  • 5Greenwood J A, Williamson J B P. Contact of nominally flat surfaces [J]. Proceedings of the Royal Society of London, 1966,A295:300 -317.
  • 6Majumdar A, Bhushan B. Fractal model of elastic-plastic contact between rough surfaces[ J]. ASME Journal of Tribology, 1991, 113(1): 1 -11.
  • 7Jiang Shuyun, Zheng Yunjian. A contact stiffness model of machined joint surfaces[J]. ASME Journal of Tribology, 2010 , 132(1) :1-7.
  • 8Wang S, Komvopoulos K. A fractal theory of the interracial temperature distribution in the slow sliding regime: part I--elastic contact and heat transfer analysis [ J ]. ASME Journal of Tribology, 1994,116 (4) :812 - 823.
  • 9Wang S, Komvopoulos K. A fractal theory of the interracial temperature distribution in the slow sliding regime: part Ⅱ-- multiple domains, elastoplastic contacts and applications [ J]. ASME Journal of Tribology, 1994, 116(4) :824 - 832.
  • 10Yan W, Komvopoulos K. Contact analysis of elastic-plastic fractal surfaces [ J]. Jourmal of Applied Physics, 1998, 84 (7) : 3 617 - 3 624.

共引文献322

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部