期刊文献+

基于加权Schatten-1/2范数的低秩矩阵近似算法

Weighted Schatten-1/2 Norm Minimization for Low-Rank Matrix Approximation
在线阅读 下载PDF
导出
摘要 本文提出加权的Schatten-1/2拟范数求解低秩矩阵近似问题,该模型以加权的Schatten-1/2拟范数为目标函数,观测矩阵为约束。通过基于阈值的加权不动点迭代算法求解。该方法通过分配不同权值体现奇异值的重要性可更好地近似原来的低秩假设。另一方面,针对奇异值计算量大的问题引入约化奇异值分解。数值实验结果表明,该方法具有较快的收敛速度。 In this paper, the low-rank matrix approximation problem is discussed with a weighted Schatten quasi-norm as the objective function, constrained by partial obtained data. The weights are in-troduced to measure the importance of different rank components. A weighted fixed point iterative thresholding algorithm is proposed based on the fixed point representation theory. The con-vergence analysis of the algorithm is provided. Numerical examples illustrate the effciency of our method.
出处 《理论数学》 2021年第6期998-1009,共12页 Pure Mathematics
  • 相关文献

参考文献2

二级参考文献30

  • 1Natarajan B K. Sparse approximate solutions to linear sys- tems. SIAM Journal oll Computing, 1995, 24(2): 227-234.
  • 2Chen S, Donoho D L, Saunders M A. Atomic decomposi- tion by basis pursuit. SIAM Journal on Scientit]c Comput- ing, 1998, 20(1): 33-61.
  • 3Candes E, Wakin M, Boyd S. Enhancing sparsity by reweighted L1 minimization. Journal of Fourier Analysis and Applications, 2008, 14(5): 877--905.
  • 4Chartrand R. Exact reconstructions of sparse signals via nonconvex minimization. IEEE Signal Processing Letters, 2007, 14(I0): 707--710.
  • 5Chartrand R, Staneva V. Restricted isometry properties and nonconvex compressive sensing. Inverse Problems, 2008, 24(3): 1-14.
  • 6Donoho D L. Neighborly polytopes and the sparse solu- tion of underdetermined linear equations [Online], available: http: //www-stat.stanford.edu/ donoho/ Reports/ 2005/ NPaSSULE-01-28-05.pdf, November 8, 2011.
  • 7Donoho D L. High-dimensional centrally symmetric poly- topes with neighborliness proportional to dimension. Dis- crete and Computational Geometry, 2006, 35(4): 617-652.
  • 8Donoho D L, Stodden V. Breakdown point of model selection when the number of variables exceeds the number of observa- tions. In: Proceedings of the International Joint Conference on Neural Networks. Vancouver, USA: IEEE, 2006. 1916- 1921.
  • 9Xu Z B, Zhang H, Wang Y, Chang X Y, Yong L. L1/2 reg- ularization. Science in China Series F: Information Sciences, 2010, 53(6): 1159-1169.
  • 10Chen X, Xu F M, Ye Y. Lower bound theory of nonzero entries in solutions of L2-Lp minimization. SIAM Journal on Scientific Computing, 2010, 32(5): 2832-2852.

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部