摘要
The increased consumption of azithromycin during the COVID-19 pandemic may have led to its presence in the waterways. This study aims to evaluate the effect of this situation on aquatic bacteria. Methodology: Over a four-month period following the official recognition of the COVID-19 outbreak in Yaoundé, water samples were collected from four rivers selected on the basis of their vicinity to care centers for COVID-19. Bacteria within azithromycin’s spectrum of activity were isolated, and the antibiotic’s efficacy was tested against the most frequently isolated species. The influence of COVID-19 incidence and other external factors was also assessed. Results: The most frequently isolated bacteria were Bacillus spp., Enterococcus spp., Listeria spp. and Staphylococcus epidermidis. These strains exhibited varying levels of sensitivity to azithromycin, ranging from 0% to 100%. The observed resistance rates were 12.5%, 14.29%, 16.67%, and 0%, respectively. Neither COVID-19 incidence, proximity to hospitals, nor rainfall significantly influenced bacterial resistance rates to azithromycin (P > 0.05). These resistance levels may be attributed to the relatively short exposure of bacteria to azithromycin at the sampled locations, as well as the impact of agricultural and livestock-related chemicals, such as biocides and antibiotics, present in the watershed. Conclusion: These results highlight the need to integrate into anti-COVID-19 activities, the monitoring of bacteria’s sensitivity in aquatic environments.
The increased consumption of azithromycin during the COVID-19 pandemic may have led to its presence in the waterways. This study aims to evaluate the effect of this situation on aquatic bacteria. Methodology: Over a four-month period following the official recognition of the COVID-19 outbreak in Yaoundé, water samples were collected from four rivers selected on the basis of their vicinity to care centers for COVID-19. Bacteria within azithromycin’s spectrum of activity were isolated, and the antibiotic’s efficacy was tested against the most frequently isolated species. The influence of COVID-19 incidence and other external factors was also assessed. Results: The most frequently isolated bacteria were Bacillus spp., Enterococcus spp., Listeria spp. and Staphylococcus epidermidis. These strains exhibited varying levels of sensitivity to azithromycin, ranging from 0% to 100%. The observed resistance rates were 12.5%, 14.29%, 16.67%, and 0%, respectively. Neither COVID-19 incidence, proximity to hospitals, nor rainfall significantly influenced bacterial resistance rates to azithromycin (P > 0.05). These resistance levels may be attributed to the relatively short exposure of bacteria to azithromycin at the sampled locations, as well as the impact of agricultural and livestock-related chemicals, such as biocides and antibiotics, present in the watershed. Conclusion: These results highlight the need to integrate into anti-COVID-19 activities, the monitoring of bacteria’s sensitivity in aquatic environments.