期刊文献+

Generalized Harmonic Numbers H<sub>n,k,r</sub> (α,β) with Combinatorial Sequences 被引量:1

Generalized Harmonic Numbers H<sub>n,k,r</sub> (α,β) with Combinatorial Sequences
在线阅读 下载PDF
导出
摘要 In this paper, we observe the generalized Harmonic numbers H<sub>n,k,r</sub> (α,β). Using generating function, we investigate some new identities involving generalized Harmonic numbers H<sub>n,k,r</sub> (α,β) with Changhee sequences, Daehee sequences, Degenerate Changhee-Genoocchi sequences, Two kinds of degenerate Stirling numbers. Using Riordan arrays, we explore interesting relations between these polynomials, Apostol Bernoulli sequences, Apostol Euler sequences, Apostol Genoocchi sequences. In this paper, we observe the generalized Harmonic numbers H<sub>n,k,r</sub> (α,β). Using generating function, we investigate some new identities involving generalized Harmonic numbers H<sub>n,k,r</sub> (α,β) with Changhee sequences, Daehee sequences, Degenerate Changhee-Genoocchi sequences, Two kinds of degenerate Stirling numbers. Using Riordan arrays, we explore interesting relations between these polynomials, Apostol Bernoulli sequences, Apostol Euler sequences, Apostol Genoocchi sequences.
作者 Rui Wang &#160 Wuyungaowa Rui Wang;&#160;Wuyungaowa(Department of Mathematics, College of Sciences and Technology, Inner Mongolia University, Hohhot, China)
出处 《Journal of Applied Mathematics and Physics》 2022年第5期1602-1618,共17页 应用数学与应用物理(英文)
关键词 Generating Function Riordan Arrays Generalized Harmonic Numbers Changhee Sequences Daehee Sequences Apostol Bernoulli Sequences Degenerate Changhee-Genoocchi Sequences Generating Function Riordan Arrays Generalized Harmonic Numbers Changhee Sequences Daehee Sequences Apostol Bernoulli Sequences Degenerate Changhee-Genoocchi Sequences
  • 相关文献

参考文献3

二级参考文献7

  • 1Cheon G S, E1-Mikkawy M A. Generalized harmonic numbers with Riordan arrays[J]. Journal of Number Theory, 2008, 128(2): 413-425.
  • 2Wang W P. Riordan arrays and harmonic number identities[J]. Computers and Mathematics with Appli- cations, 2010, 60(5): 1494-1509.
  • 3Zhao F Z, Wuyungaowa. Some results on a class of generalized harmonic numbers[J]. Utilitas Mathematica, 2012, 87(1): 65-78.
  • 4Merlini D, Sprugnoli R, Verri M C. The method of coefficients[J]. American Mathematical Monthly, 2007, 114:40-57.
  • 5Bender E A. Asymptotic methods in enumerationIJ]. SIAM Review, 1974, 16(4): 485-515.
  • 6Flajolet P, et al. A hybrid of Darboux's method and singularity analysis in combinatorial asymptotics[J]. The Electronic Journal of Combinatorics, 2006, 13:R103.
  • 7Tiberiu T. Combinatorial sums and series involving inverse of binomial coefficients[J]. The Fibonazci Quar- terly, 2000, 38(1): 79-84.

共引文献1

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部