期刊文献+

Existence of a Sigh-Changing Solution Result for Logarithmic Schrödinger Equations with Weight Function

Existence of a Sigh-Changing Solution Result for Logarithmic Schrödinger Equations with Weight Function
在线阅读 下载PDF
导出
摘要 This paper is devoted to studying the existence of solutions for the following logarithmic Schrödinger problem: −div(a(x)∇u)+V(x)u=ulogu2+k(x)| u |q1−2u+h(x)| u |q2−2u,  x∈ℝN.(1)We first prove that the corresponding functional I belongs to C1(HV1(ℝN),ℝ). Furthermore, by using the variational method, we prove the existence of a sigh-changing solution to problem (1). This paper is devoted to studying the existence of solutions for the following logarithmic Schrödinger problem: −div(a(x)∇u)+V(x)u=ulogu2+k(x)| u |q1−2u+h(x)| u |q2−2u,  x∈ℝN.(1)We first prove that the corresponding functional I belongs to C1(HV1(ℝN),ℝ). Furthermore, by using the variational method, we prove the existence of a sigh-changing solution to problem (1).
作者 Jingxing Huang Junhui Xie Jingxing Huang;Junhui Xie(School of Mathematics and Statistics, Hubei Minzu University, Enshi, China)
出处 《Journal of Applied Mathematics and Physics》 2024年第7期2665-2681,共17页 应用数学与应用物理(英文)
关键词 Logarithmic Schrödinger Equations Weight Function Constrained Minimization Method Symmetric Mountain Pass Theorem Logarithmic Schrödinger Equations Weight Function Constrained Minimization Method Symmetric Mountain Pass Theorem
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部