期刊文献+

The Effect of Laser Sintering Process Parameters on Cu Nanoparticle Ink in Room Conditions 被引量:2

在线阅读 下载PDF
导出
摘要 Copper is an interesting material for printed electronics inks because, for example, of its good conductivity and lower raw material price compared to silver. However, post-processing Cu inks is challenging because of non-conductive copper oxide. In this work, inkjet-printed Cu nanoparticle structures were sintered on a polyimide substrate with a continuous-wave 808-nm diode laser. Laser sintering was tested by varying the sintering parameters (optical power and scanning velocity), and the electrical resistance of the samples was measured. A minimum sheet resistance of approx.90 mΩ/□ was obtained. All tests were run in room conditions. Sintered structures were then analyzed from SEM images. Results showed that laser sintering produces good repeatability, that a scanning velocity increment positively affects the process window, and that multiple sintering cycles do not increase conductivity. Copper is an interesting material for printed electronics inks because, for example, of its good conductivity and lower raw material price compared to silver. However, post-processing Cu inks is challenging because of non-conductive copper oxide. In this work, inkjet-printed Cu nanoparticle structures were sintered on a polyimide substrate with a continuous-wave 808-nm diode laser. Laser sintering was tested by varying the sintering parameters (optical power and scanning velocity), and the electrical resistance of the samples was measured. A minimum sheet resistance of approx.90 mΩ/□ was obtained. All tests were run in room conditions. Sintered structures were then analyzed from SEM images. Results showed that laser sintering produces good repeatability, that a scanning velocity increment positively affects the process window, and that multiple sintering cycles do not increase conductivity.
出处 《Optics and Photonics Journal》 2013年第4期40-44,共5页 光学与光子学期刊(英文)
基金 M.Mäntysalo is sponsored by Academy of Finland with grant No.251882.
  • 相关文献

同被引文献4

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部