期刊文献+

RNAi Mediated Drought and Salinity Stress Tolerance in Plants 被引量:2

RNAi Mediated Drought and Salinity Stress Tolerance in Plants
在线阅读 下载PDF
导出
摘要 RNAi mediated gene silencing demonstrated to serve as a defence mechanism against abiotic stress. Some endogenous small RNAs (microRNA and siRNA) have emerged as important players in plant abiotic stress response. Drought and salinity are the major environmental stresses that limit the agricultural food production. miRNA involved in drought and salinity stress response, including ABA response, auxin signalling, osmoprotection and antioxidant defence by downregulating the response target gene. It is observed that some of the microRNAs are upregulated or downregulated in response to drought and salt stress. We reviewed that miR167, miR393, mir474, miR169g are upregulated whereas miR168, miR396, miR397 are downregulated in rice plant during drought stress. Moreover, our detail categorical analysis on the basis of mechanism of action found that miRNA involved in drought stress was 28% in ABA signalling and response, 14.2% in auxin signalling, 9.52% in miRNA processing, 14.2% in cell growth, 9.52% in antioxidant defence, 4.76% in CO2 fixation and 9.52% in osmotic adjustment. Similarly, miRNA involved in salinity stress was 5.8% in auxin signalling, 23.5% in vegetative phase change and root, shoot, leaf and vascular development, 11.76% in gynoecium and stamens development, 8.82% in metabolic adaptation, 2.74% in early embryogenesis and 41.17% not known. Importantly, some common miRNAs such as miR159, miR167, miR169, miR393 and miR397 play an important role in both drought and salinity stress conditions. Here, in this review, we mainly focused on the current status of miRNAs, mechanism of action and their regulatory network during drought and salinity stress in plants. RNAi mediated gene silencing demonstrated to serve as a defence mechanism against abiotic stress. Some endogenous small RNAs (microRNA and siRNA) have emerged as important players in plant abiotic stress response. Drought and salinity are the major environmental stresses that limit the agricultural food production. miRNA involved in drought and salinity stress response, including ABA response, auxin signalling, osmoprotection and antioxidant defence by downregulating the response target gene. It is observed that some of the microRNAs are upregulated or downregulated in response to drought and salt stress. We reviewed that miR167, miR393, mir474, miR169g are upregulated whereas miR168, miR396, miR397 are downregulated in rice plant during drought stress. Moreover, our detail categorical analysis on the basis of mechanism of action found that miRNA involved in drought stress was 28% in ABA signalling and response, 14.2% in auxin signalling, 9.52% in miRNA processing, 14.2% in cell growth, 9.52% in antioxidant defence, 4.76% in CO2 fixation and 9.52% in osmotic adjustment. Similarly, miRNA involved in salinity stress was 5.8% in auxin signalling, 23.5% in vegetative phase change and root, shoot, leaf and vascular development, 11.76% in gynoecium and stamens development, 8.82% in metabolic adaptation, 2.74% in early embryogenesis and 41.17% not known. Importantly, some common miRNAs such as miR159, miR167, miR169, miR393 and miR397 play an important role in both drought and salinity stress conditions. Here, in this review, we mainly focused on the current status of miRNAs, mechanism of action and their regulatory network during drought and salinity stress in plants.
机构地区 Department of Botany
出处 《American Journal of Plant Sciences》 2015年第12期1990-2008,共19页 美国植物学期刊(英文)
关键词 RNAI miRNA siRNA DROUGHT STRESS SALINITY STRESS Rice Plant Gene Regulation RNAi miRNA siRNA Drought Stress Salinity Stress Rice Plant Gene Regulation
  • 相关文献

同被引文献30

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部