We demonstrate our experiment of controlling spatial displacements of the probe beam induced by the cross-Kerr effect in a three-level V-type atomic system. By increasing the atomic density or the intensity of strong ...We demonstrate our experiment of controlling spatial displacements of the probe beam induced by the cross-Kerr effect in a three-level V-type atomic system. By increasing the atomic density or the intensity of strong control laser beams, spatial displacements are enhanced. We further study the difference of effects from the atomic density and the laser intensity. In addition, the spatial displacement efficiencies of the probe beam in different energy level atomic systems are compared. Such studies of controlling spatial displacements can have potential applications in soliton deflection, spatial optical switch and generating spatially correlated (entangled) laser beams in multi-level EIT systems.展开更多
We study the colour-locked twin-noisy-field correlation effects in the fifth-order nonlinear susceptibility of ultrafast polarization beats in a cascade four-level system. More importantly, the fifth-order phase-sensi...We study the colour-locked twin-noisy-field correlation effects in the fifth-order nonlinear susceptibility of ultrafast polarization beats in a cascade four-level system. More importantly, the fifth-order phase-sensitive heterodyne detection of ultrafast polarization beats has been exploited. The fifth-order nonlinear optical response can be controlled and modified through the colour-locked correlation of twin noisy fields. Thus, this method with the phase dispersion information is a good way to measure the real and imaginary parts of the fifth-order nonlinear susceptibility.展开更多
We study the competition between dispersion and absorption of doubly-dressed four-wave mixing (DDFWM) and dressed six-wave mixing. In the case of weak coupling fields limit, we find DDFWM signal is affected by destr...We study the competition between dispersion and absorption of doubly-dressed four-wave mixing (DDFWM) and dressed six-wave mixing. In the case of weak coupling fields limit, we find DDFWM signal is affected by destructive interference between four-wave mixing(FWM) and six-wave mixing as wen as constructive interference between FWM and eight-wave mixing. By analysing the difference between two kinds of doubly dressing mechanisms (parallel cascade and nested cascade) in this opening five-level system, we can further understand the generated high-order nonlinear optical signal dressed by multi-fields.展开更多
We study the co-existing four-wave mixing (FWM) process with two dressing fields and the six-wave mixing (SWM) process with one dressing field in a five-level system with carefully arranged laser beams. We also sh...We study the co-existing four-wave mixing (FWM) process with two dressing fields and the six-wave mixing (SWM) process with one dressing field in a five-level system with carefully arranged laser beams. We also show two kinds of doubly dressing mechanisms in the FWM process. FWM and SWM signals propagating along the same direction compete with each other. With the properly controlled dressing fields, the FWM signals can be suppressed, while the SWM signals have been enhanced.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 10974151 and 60678005, the Foundation for the Author of National Excellent Doctoral Dissertation of China under Grant No 200339), the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No 20050698017, FYTEFYTIHEC (No 101061), the New Century Excellent Talent Project (NCET) of the Ministry of Education of China under Grant No 08-0431.
文摘We demonstrate our experiment of controlling spatial displacements of the probe beam induced by the cross-Kerr effect in a three-level V-type atomic system. By increasing the atomic density or the intensity of strong control laser beams, spatial displacements are enhanced. We further study the difference of effects from the atomic density and the laser intensity. In addition, the spatial displacement efficiencies of the probe beam in different energy level atomic systems are compared. Such studies of controlling spatial displacements can have potential applications in soliton deflection, spatial optical switch and generating spatially correlated (entangled) laser beams in multi-level EIT systems.
基金Project supported by the National Natural Science Foundation of China(Grant Nos60308002and60678005)the Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No200339)+2 种基金the Foundation for Key Program of Ministry of Education,China(Grant No105156)the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China(Grant No101061)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No20050698017)
文摘We study the colour-locked twin-noisy-field correlation effects in the fifth-order nonlinear susceptibility of ultrafast polarization beats in a cascade four-level system. More importantly, the fifth-order phase-sensitive heterodyne detection of ultrafast polarization beats has been exploited. The fifth-order nonlinear optical response can be controlled and modified through the colour-locked correlation of twin noisy fields. Thus, this method with the phase dispersion information is a good way to measure the real and imaginary parts of the fifth-order nonlinear susceptibility.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60308002 and 60678005, the Foundation for the National Excellent Doctoral Dissertation of China under Grant No 200339, the Foundation for the Key Programme of Ministry of Education of China under Grant No 105156, the For Ying-Tong Education Foundation for Young Teachers in the Institution of Higher Education of China under Grant No 101061, and the Specialized Research Fund for the Doctoral Programme of Higher Education of China under Gant No 20050698017.
文摘We study the competition between dispersion and absorption of doubly-dressed four-wave mixing (DDFWM) and dressed six-wave mixing. In the case of weak coupling fields limit, we find DDFWM signal is affected by destructive interference between four-wave mixing(FWM) and six-wave mixing as wen as constructive interference between FWM and eight-wave mixing. By analysing the difference between two kinds of doubly dressing mechanisms (parallel cascade and nested cascade) in this opening five-level system, we can further understand the generated high-order nonlinear optical signal dressed by multi-fields.
基金National Natural Science Foundation of China(No.60678005)Foundation for the Author of National Excellent Doctoral Dissertation of China(No.200339)+2 种基金Foundation for Key Program of Ministry of Education of China(No.105156)For Ying-Tong Education Foundation for Young Teachers in the Institutions of Higher Education of China(No.101061)Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20050698017).
文摘We study the co-existing four-wave mixing (FWM) process with two dressing fields and the six-wave mixing (SWM) process with one dressing field in a five-level system with carefully arranged laser beams. We also show two kinds of doubly dressing mechanisms in the FWM process. FWM and SWM signals propagating along the same direction compete with each other. With the properly controlled dressing fields, the FWM signals can be suppressed, while the SWM signals have been enhanced.