Based on the principle of transient perturbation analysis,in this paper,a method to objectively determine the weather pattern formed by sea fog is provided.On the basis of the classification results,the circulation si...Based on the principle of transient perturbation analysis,in this paper,a method to objectively determine the weather pattern formed by sea fog is provided.On the basis of the classification results,the circulation situation,divergence and vertical velocity field,and the vertical profile of temperature and humidity are synthesized and analyzed.The basic characteristics of the circulation and physical field of sea fog under low pressure control(L type sea fog)are obtained,and the results are compared with the sea fog under the control of high pressure(H type sea fog):a)L type sea fogs potential height anomaly disturbance is mainly manifested in the low layer,and its average value is-65.66 gpm,gradually weakening upward;b)L type sea fogs inversion structure is weaker than H type sea fogs when it occurs,the fog layer is thicker and the high relative humidity level is high over the fog layer,while the H type sea fogs fog layer has a relatively obvious dry layer;c)L sea fog has three layers of structure at the vertical direction.The first layer 1000-950 hPa is convergence accompanied by weak rise and subsidence,the second layer 950-850 hPa is divergence accompanied by weak subsidence,and the third layer 850 to 500hPa is gradually strengthened.While there are two layer structures of the H type sea fog.1000 hPa is divergence accompanied by weak rising and sinking movement,950-500 hPa is a uniform subsidence movement.d)Probability density statistical analysis further quantified the vertical movement of L and H type sea fog and the distribution of relative humidity in each layer.These conclusions provide an important reference for forecasting the sea fog in the northwest of the Yellow Sea under the condition of low pressure circulation in summer.展开更多
Marine emergencies especially oil spill may bring irreversible harm to the marine environment,and will cause immeasurable economic losses.In recent years,the demand for crude oil is increasing year by year in China wi...Marine emergencies especially oil spill may bring irreversible harm to the marine environment,and will cause immeasurable economic losses.In recent years,the demand for crude oil is increasing year by year in China with the high-speed economic development,leading to the high risk of marine oil spill.Therefore,it is necessary that promoting emergency response on marine oil spill in China and improving oil spill forecasting and early-warning techniques.This paper introduces the Marine Emergency Forecasting and Early-warning System(MEFES)developed by National Marine Data and Information Service(NMDIS).The system consists of one database,two modelling subsystems and a GIS platform.The database is the marine emergency database,and two subsystems include the marine environmental forecasting subsystem and the oil spill behaviour forecasting subsystem.MEFES has been applied in the emergency response of some major oil spill accidents occurred in recent years.The operational applications of the system can provide some theoretical basis and reference for marine oil spill emergency response.展开更多
基金supported by National Natural Science Foundation of China(No.41576108 and No.41605006)Natural Science Foundation project of Shandong Province(No.ZR2016DB26).
文摘Based on the principle of transient perturbation analysis,in this paper,a method to objectively determine the weather pattern formed by sea fog is provided.On the basis of the classification results,the circulation situation,divergence and vertical velocity field,and the vertical profile of temperature and humidity are synthesized and analyzed.The basic characteristics of the circulation and physical field of sea fog under low pressure control(L type sea fog)are obtained,and the results are compared with the sea fog under the control of high pressure(H type sea fog):a)L type sea fogs potential height anomaly disturbance is mainly manifested in the low layer,and its average value is-65.66 gpm,gradually weakening upward;b)L type sea fogs inversion structure is weaker than H type sea fogs when it occurs,the fog layer is thicker and the high relative humidity level is high over the fog layer,while the H type sea fogs fog layer has a relatively obvious dry layer;c)L sea fog has three layers of structure at the vertical direction.The first layer 1000-950 hPa is convergence accompanied by weak rise and subsidence,the second layer 950-850 hPa is divergence accompanied by weak subsidence,and the third layer 850 to 500hPa is gradually strengthened.While there are two layer structures of the H type sea fog.1000 hPa is divergence accompanied by weak rising and sinking movement,950-500 hPa is a uniform subsidence movement.d)Probability density statistical analysis further quantified the vertical movement of L and H type sea fog and the distribution of relative humidity in each layer.These conclusions provide an important reference for forecasting the sea fog in the northwest of the Yellow Sea under the condition of low pressure circulation in summer.
文摘Marine emergencies especially oil spill may bring irreversible harm to the marine environment,and will cause immeasurable economic losses.In recent years,the demand for crude oil is increasing year by year in China with the high-speed economic development,leading to the high risk of marine oil spill.Therefore,it is necessary that promoting emergency response on marine oil spill in China and improving oil spill forecasting and early-warning techniques.This paper introduces the Marine Emergency Forecasting and Early-warning System(MEFES)developed by National Marine Data and Information Service(NMDIS).The system consists of one database,two modelling subsystems and a GIS platform.The database is the marine emergency database,and two subsystems include the marine environmental forecasting subsystem and the oil spill behaviour forecasting subsystem.MEFES has been applied in the emergency response of some major oil spill accidents occurred in recent years.The operational applications of the system can provide some theoretical basis and reference for marine oil spill emergency response.