We solve the Klein-Cordon equation with a new anharmonic oscillator potential and present the exact solutions. It is shown that under the condition of equal scalar and vector potentials, the Klein-Cordon equation coul...We solve the Klein-Cordon equation with a new anharmonic oscillator potential and present the exact solutions. It is shown that under the condition of equal scalar and vector potentials, the Klein-Cordon equation could be separated into an angular equation and a radial equation. The angular solutions are the associated-Legendre polynomial and the radial solutions are expressed in terms of the confluent hypergeometric functions. Finally, the energy equation is obtained from the boundary condition satisfied by the radial wavefunctions.展开更多
In this paper, the Klein-Gordon equation with equal scalar and vector Makaxov potentials is studied by the factorization method. The energy equation and the normalized bound state solutions are obtained, a recurrence ...In this paper, the Klein-Gordon equation with equal scalar and vector Makaxov potentials is studied by the factorization method. The energy equation and the normalized bound state solutions are obtained, a recurrence relation between the different principal quantum number n corresponding to a certain angular quantum number l is established and some special cases of Makarov potential axe discussed.展开更多
The Schr?dinger equation with the Manning-Rosen potential is studied by working in a complete square integrable basis that carries a tridiagonal matrix representation of the wave operator. In this program, solving th...The Schr?dinger equation with the Manning-Rosen potential is studied by working in a complete square integrable basis that carries a tridiagonal matrix representation of the wave operator. In this program, solving the Schr?dinger equation is translated into finding solutions of the resulting three-term recursion relation for the expansion coefficients of the wavefunction. The discrete spectrum of the bound states is obtained by diagonalization of the recursion relation with special choice of the parameters and the wavefunctions is expressed in terms of the Jocobi polynomial.展开更多
In this paper, the Klein-Gordon equation with the spherical symmetric Hulthén potential is turned into a hypergeometric equation and is solved in the framework of function analysis exactly. The corresponding boun...In this paper, the Klein-Gordon equation with the spherical symmetric Hulthén potential is turned into a hypergeometric equation and is solved in the framework of function analysis exactly. The corresponding bound state solutions are expressed in terms of the hypergeometric function, and the energy spectrum of the bound states is obtained as a solution to a given equation by boundary constraints.展开更多
The Schr(o)dinger equation with the Hulthén potential is studied by working in a complete square integrable basis that carries a tridiagonal matrix representation of the wave operator.The arbitrary e-wave solutio...The Schr(o)dinger equation with the Hulthén potential is studied by working in a complete square integrable basis that carries a tridiagonal matrix representation of the wave operator.The arbitrary e-wave solutions are obtained by using an approximation of the centrifugal term.The resulting three-term recursion relation for the expansion coefficients of the wavefunction is presented and the wavefunctions are expressed in terms of the Jocobi polynomial.The discrete spectrum of the bound states is obtained by the diagonalization of the recursion relation.展开更多
The analytical solutions to the Schrodinger equation with the Eckart potential in arbitrary dimension D is investigated by using the Nikiforov-Uvarov method, and the centrifugal term is treated approximatively with th...The analytical solutions to the Schrodinger equation with the Eckart potential in arbitrary dimension D is investigated by using the Nikiforov-Uvarov method, and the centrifugal term is treated approximatively with the scheme of Greene and Aldrich. The discrete spectrum is obtained and the wavefunetion is expressed in terms of the Jacobi polynomial or the hypergeometric function. Some special cases of the Eckart potential are discussed for D=3, and the resulting energy equation agrees well with that obtained by other methods.展开更多
文摘We solve the Klein-Cordon equation with a new anharmonic oscillator potential and present the exact solutions. It is shown that under the condition of equal scalar and vector potentials, the Klein-Cordon equation could be separated into an angular equation and a radial equation. The angular solutions are the associated-Legendre polynomial and the radial solutions are expressed in terms of the confluent hypergeometric functions. Finally, the energy equation is obtained from the boundary condition satisfied by the radial wavefunctions.
文摘In this paper, the Klein-Gordon equation with equal scalar and vector Makaxov potentials is studied by the factorization method. The energy equation and the normalized bound state solutions are obtained, a recurrence relation between the different principal quantum number n corresponding to a certain angular quantum number l is established and some special cases of Makarov potential axe discussed.
文摘The Schr?dinger equation with the Manning-Rosen potential is studied by working in a complete square integrable basis that carries a tridiagonal matrix representation of the wave operator. In this program, solving the Schr?dinger equation is translated into finding solutions of the resulting three-term recursion relation for the expansion coefficients of the wavefunction. The discrete spectrum of the bound states is obtained by diagonalization of the recursion relation with special choice of the parameters and the wavefunctions is expressed in terms of the Jocobi polynomial.
文摘In this paper, the Klein-Gordon equation with the spherical symmetric Hulthén potential is turned into a hypergeometric equation and is solved in the framework of function analysis exactly. The corresponding bound state solutions are expressed in terms of the hypergeometric function, and the energy spectrum of the bound states is obtained as a solution to a given equation by boundary constraints.
基金Supported partly by the Scientific Research Foundation of the Education Department of Shaanxi Province under Grant No 2010JK539.
文摘The Schr(o)dinger equation with the Hulthén potential is studied by working in a complete square integrable basis that carries a tridiagonal matrix representation of the wave operator.The arbitrary e-wave solutions are obtained by using an approximation of the centrifugal term.The resulting three-term recursion relation for the expansion coefficients of the wavefunction is presented and the wavefunctions are expressed in terms of the Jocobi polynomial.The discrete spectrum of the bound states is obtained by the diagonalization of the recursion relation.
基金Supported by the National Natural Science Foundation of China under Grant No 14101020155the Fundamental Research Funds for the Central Universities under Grant No GK201402012
文摘The analytical solutions to the Schrodinger equation with the Eckart potential in arbitrary dimension D is investigated by using the Nikiforov-Uvarov method, and the centrifugal term is treated approximatively with the scheme of Greene and Aldrich. The discrete spectrum is obtained and the wavefunetion is expressed in terms of the Jacobi polynomial or the hypergeometric function. Some special cases of the Eckart potential are discussed for D=3, and the resulting energy equation agrees well with that obtained by other methods.