Cloud resolving Weather Research and Forecasting(WRF)model simulations are used to investigate tropical cyclone(TC)genesis efficiency in an environment with a near bottom vortex(EBV)and an environment with a mid-level...Cloud resolving Weather Research and Forecasting(WRF)model simulations are used to investigate tropical cyclone(TC)genesis efficiency in an environment with a near bottom vortex(EBV)and an environment with a mid-level vortex(EMV).Sensitivity experiments show that the genesis timing depends greatly on initial vorticity vertical profiles.The larger the initial column integrated absolute vorticity,the greater the genesis efficiency is.Given the same column integrated absolute vorticity,a bottom vortex has higher genesis efficiency than a mid-level vortex.A common feature among these experiments is the formation of a mid-level vorticity maximum prior to TC genesis irrespective where the initial vorticity maximum locates.Both the EMV and EBV scenarios share the following development characteristics:1)a transition from non-organized cumulus-scale(~5 km)convective cells into an organized meso-vortex-scale(~50 to 100 km)system through upscale cascade processes,2)the establishment of a nearly saturated air column prior to a rapid drop of the central minimum pressure,and 3)a multiple convective-stratiform phase transition.A genesis efficiency index(GEI)is formulated that includes the following factors:initial column integrated absolute vorticity,vorticity at top of the boundary layer and vertically integrated relative humidity.The calculated GEI reflects well the simulated genesis efficiency and thus may be used to estimate how fast a tropical disturbance develops into a TC.展开更多
An unprecedented heavy rainfall event occurred in Henan Province,China,during the period of 1200 UTC 19-1200 UTC 20 July 2021 with a record of 522 mm accumulated rainfall.Zhengzhou,the capital city of Henan,received 2...An unprecedented heavy rainfall event occurred in Henan Province,China,during the period of 1200 UTC 19-1200 UTC 20 July 2021 with a record of 522 mm accumulated rainfall.Zhengzhou,the capital city of Henan,received 201.9 mm of rainfall in just one hour on the day.In the present study,the sensitivity of this event to atmospheric variables is investigated using the ECMWF ensemble forecasts.The sensitivity analysis first indicates that a local YellowHuai River low vortex(YHV)in the southern part of Henan played a crucial role in this extreme event.Meanwhile,the western Pacific subtropical high(WPSH)was stronger than the long-term average and to the west of its climatological position.Moreover,the existence of a tropical cyclone(TC)In-Fa pushed into the peripheral of the WPSH and brought an enhanced easterly flow between the TC and WPSH channeling abundant moisture to inland China and feeding into the YHV.Members of the ECMWF ensemble are selected and grouped into the GOOD and the POOR groups based on their predicted maximum rainfall accumulations during the event.Some good members of ECMWF ensemble Prediction System(ECMWF-EPS)are able to capture good spatial distribution of the heavy rainfall,but still underpredict its extremity.The better prediction ability of these members comes from the better prediction of the evolution characteristics(i.e.,intensity and location)of the YHV and TC In-Fa.When the YHV was moving westward to the south of Henan,a relatively strong southerly wind in the southwestern part of Henan converged with the easterly flow from the channel wind between In-Fa and WPSH.The convergence and accompanying ascending motion induced heavy precipitation.展开更多
基金Office of Naval Research(N000140810256,N000141010774)National Science Foundation of China(41075037)+2 种基金Japan Agency for Marine-Earth Science and Technology(JAMSTEC)NASA(NNX07AG53G)NOAA(NA17RJ1230)
文摘Cloud resolving Weather Research and Forecasting(WRF)model simulations are used to investigate tropical cyclone(TC)genesis efficiency in an environment with a near bottom vortex(EBV)and an environment with a mid-level vortex(EMV).Sensitivity experiments show that the genesis timing depends greatly on initial vorticity vertical profiles.The larger the initial column integrated absolute vorticity,the greater the genesis efficiency is.Given the same column integrated absolute vorticity,a bottom vortex has higher genesis efficiency than a mid-level vortex.A common feature among these experiments is the formation of a mid-level vorticity maximum prior to TC genesis irrespective where the initial vorticity maximum locates.Both the EMV and EBV scenarios share the following development characteristics:1)a transition from non-organized cumulus-scale(~5 km)convective cells into an organized meso-vortex-scale(~50 to 100 km)system through upscale cascade processes,2)the establishment of a nearly saturated air column prior to a rapid drop of the central minimum pressure,and 3)a multiple convective-stratiform phase transition.A genesis efficiency index(GEI)is formulated that includes the following factors:initial column integrated absolute vorticity,vorticity at top of the boundary layer and vertically integrated relative humidity.The calculated GEI reflects well the simulated genesis efficiency and thus may be used to estimate how fast a tropical disturbance develops into a TC.
基金National Natural Science Foundation of China(42175003,42088101)Graduate Research and Innovation Projects of Jiangsu Province(KYCX22_1134)。
文摘An unprecedented heavy rainfall event occurred in Henan Province,China,during the period of 1200 UTC 19-1200 UTC 20 July 2021 with a record of 522 mm accumulated rainfall.Zhengzhou,the capital city of Henan,received 201.9 mm of rainfall in just one hour on the day.In the present study,the sensitivity of this event to atmospheric variables is investigated using the ECMWF ensemble forecasts.The sensitivity analysis first indicates that a local YellowHuai River low vortex(YHV)in the southern part of Henan played a crucial role in this extreme event.Meanwhile,the western Pacific subtropical high(WPSH)was stronger than the long-term average and to the west of its climatological position.Moreover,the existence of a tropical cyclone(TC)In-Fa pushed into the peripheral of the WPSH and brought an enhanced easterly flow between the TC and WPSH channeling abundant moisture to inland China and feeding into the YHV.Members of the ECMWF ensemble are selected and grouped into the GOOD and the POOR groups based on their predicted maximum rainfall accumulations during the event.Some good members of ECMWF ensemble Prediction System(ECMWF-EPS)are able to capture good spatial distribution of the heavy rainfall,but still underpredict its extremity.The better prediction ability of these members comes from the better prediction of the evolution characteristics(i.e.,intensity and location)of the YHV and TC In-Fa.When the YHV was moving westward to the south of Henan,a relatively strong southerly wind in the southwestern part of Henan converged with the easterly flow from the channel wind between In-Fa and WPSH.The convergence and accompanying ascending motion induced heavy precipitation.