岩石的短期和长期力学性能和变形特性对工程长期稳定与安全有着重要的影响。传统的本构模型难以统一描述不同岩石材料的短长期力学特性,而基于深度学习方法的理论可在不引入其他弹塑性参数以及本构规律的情况下预测不同岩石的力学特性...岩石的短期和长期力学性能和变形特性对工程长期稳定与安全有着重要的影响。传统的本构模型难以统一描述不同岩石材料的短长期力学特性,而基于深度学习方法的理论可在不引入其他弹塑性参数以及本构规律的情况下预测不同岩石的力学特性。长短期记忆(long short-term mernory,简称LSTM)深度学习算法适用于处理具有时间序列的数据任务,用于预测岩石短长期力学特性具有显著优势。通过引入LSTM算法,分别根据三轴压缩加载路径和应力松弛随时间变化的规律构建序列数据,建立了灰砂岩在常规三轴压缩以及应力松弛下的力学特性预测模型。与试验数据进行对比,可以证明基于深度学习的岩石短长期力学预测本构模型的准确性。为进一步提升模型工程应用价值,将LSTM本构模型嵌入到有限元法(finite element method,简称FEM)框架中进行数值实现,并应用于灰砂岩变形特性的模拟。对比结果表明,LSTM-FEM方法具有较好地预测岩石短长期变形特性的能力。展开更多
利用Biome-BGC模型模拟了1960—2013年太白山太白红杉林生态系统的净初级生产力(NPP),对其与太白红杉的径向生长关系进行了探讨,并分析了NPP值对气候变化的响应关系。结果表明:1960—2013年太白山太白红杉林北坡NPP年均值为305.33g C m^...利用Biome-BGC模型模拟了1960—2013年太白山太白红杉林生态系统的净初级生产力(NPP),对其与太白红杉的径向生长关系进行了探讨,并分析了NPP值对气候变化的响应关系。结果表明:1960—2013年太白山太白红杉林北坡NPP年均值为305.33g C m^(-2)a^(-1),南坡为320.71g C m^(-2)a^(-1),南北坡的NPP值均呈现出一定的上升趋势,北坡的上升速率(0.47g C m^(-2)a^(-1))要小于南坡(1.29g C m^(-2)a^(-1)),但是北坡太白红杉分布下限区NPP值波动浮动较大。且北坡太白红杉NPP值随着海拔高度的上升而逐渐下降,低海拔的变化振幅要大于高海拔地区,南坡无明显变化。多数采样点的模拟NPP值与树轮宽度指数年际变化趋势趋于一致,相关关系呈显著相关。太白红杉标准年表、模型模拟NPP值与气象因子的相关分析均表明太白红杉的生长与生长季气温的相关性显著高于降水,即生长季的气温是太白红杉生长的限制因子。气候的变化作为制约太白红杉生境的重要因素,影响了太白红杉树木的生长,进而对NPP的变化产生了影响。树木年轮很好的检验了Biome-BGC模型模拟结果。展开更多
文摘岩石的短期和长期力学性能和变形特性对工程长期稳定与安全有着重要的影响。传统的本构模型难以统一描述不同岩石材料的短长期力学特性,而基于深度学习方法的理论可在不引入其他弹塑性参数以及本构规律的情况下预测不同岩石的力学特性。长短期记忆(long short-term mernory,简称LSTM)深度学习算法适用于处理具有时间序列的数据任务,用于预测岩石短长期力学特性具有显著优势。通过引入LSTM算法,分别根据三轴压缩加载路径和应力松弛随时间变化的规律构建序列数据,建立了灰砂岩在常规三轴压缩以及应力松弛下的力学特性预测模型。与试验数据进行对比,可以证明基于深度学习的岩石短长期力学预测本构模型的准确性。为进一步提升模型工程应用价值,将LSTM本构模型嵌入到有限元法(finite element method,简称FEM)框架中进行数值实现,并应用于灰砂岩变形特性的模拟。对比结果表明,LSTM-FEM方法具有较好地预测岩石短长期变形特性的能力。
文摘利用Biome-BGC模型模拟了1960—2013年太白山太白红杉林生态系统的净初级生产力(NPP),对其与太白红杉的径向生长关系进行了探讨,并分析了NPP值对气候变化的响应关系。结果表明:1960—2013年太白山太白红杉林北坡NPP年均值为305.33g C m^(-2)a^(-1),南坡为320.71g C m^(-2)a^(-1),南北坡的NPP值均呈现出一定的上升趋势,北坡的上升速率(0.47g C m^(-2)a^(-1))要小于南坡(1.29g C m^(-2)a^(-1)),但是北坡太白红杉分布下限区NPP值波动浮动较大。且北坡太白红杉NPP值随着海拔高度的上升而逐渐下降,低海拔的变化振幅要大于高海拔地区,南坡无明显变化。多数采样点的模拟NPP值与树轮宽度指数年际变化趋势趋于一致,相关关系呈显著相关。太白红杉标准年表、模型模拟NPP值与气象因子的相关分析均表明太白红杉的生长与生长季气温的相关性显著高于降水,即生长季的气温是太白红杉生长的限制因子。气候的变化作为制约太白红杉生境的重要因素,影响了太白红杉树木的生长,进而对NPP的变化产生了影响。树木年轮很好的检验了Biome-BGC模型模拟结果。