In the fabrication of phase change random access memory (PRAM) devices, high temperature thermal processes are inevitable. We investigate the thermal stability of GezSb2Te5 (GST) which is a prototypical phase chan...In the fabrication of phase change random access memory (PRAM) devices, high temperature thermal processes are inevitable. We investigate the thermal stability of GezSb2Te5 (GST) which is a prototypical phase change material. After high temperature process, voids of phase change material exist at the interface between Ge2Sb2Te5 and substrate in the initial open memory cell. This lower region of GezSb2Te5 is found to be a Te-rich phase change layer. Phase change memory devices are fabricated in different process conditions and examined by scanning electron microscopy and energy dispersive X-ray. It is found that hot-chuck process, nitrogen-doping process, and lower temperature inter-metal dielectric (IMD) deposition process can ease the thermal impact of line-GST PRAM cell.展开更多
Phase change random access memory (PCRAM) is one of the best candidates for next generation non- volatile memory, and phase change SiESbETe5 material is expected to be a promising material for PCRAM. In the fabricat...Phase change random access memory (PCRAM) is one of the best candidates for next generation non- volatile memory, and phase change SiESbETe5 material is expected to be a promising material for PCRAM. In the fabrication of phase change random access memories, the etching process is a critical step. In this paper, the etching characteristics of Si2Sb2Te5 films were studied with a CF4/Ar gas mixture using a reactive ion etching system. We observed a monotonic decrease in etch rate with decreasing CF4 concentration, meanwhile, Ar concentration went up and smoother etched surfaces were obtained. It proves that CF4 determines the etch rate while Ar plays an im- portant role in defining the smoothness of the etched surface and sidewall edge acuity. Compared with GeESbETe5, it is found that Si2Sb2Te5 has a greater etch rate. Etching characteristics of Si2SbETe5 as a function of power and pressure were also studied. The smoothest surfaces and most vertical sidewalls were achieved using a CF4/Ar gas mixture ratio of 10/40, a background pressure of 40 mTorr, and power of 200 W.展开更多
Chemical mechanical planarization(CMP) of amorphous Ge_2Sb_2Te_5(a-GST) is investigated using two typical soft pads(politex REG and AT) in acidic slurry.After CMP,it is found that the removal rate(RR) of a-GST...Chemical mechanical planarization(CMP) of amorphous Ge_2Sb_2Te_5(a-GST) is investigated using two typical soft pads(politex REG and AT) in acidic slurry.After CMP,it is found that the removal rate(RR) of a-GST increases with an increase of runs number for both pads.However,it achieves the higher RR and better surface quality of a-GST for an AT pad.The in-situ sheet resistance(R_s) measure shows the higher R_s of a-GST polishing can be gained after CMP using both pads and the high R_s is beneficial to lower the reset current for the PCM cells. In order to find the root cause of the different RR of a-GST polishing with different pads,the surface morphology and characteristics of both new and used pads are analyzed,it shows that the AT pad has smaller porosity size and more pore counts than that of the REG pad,and thus the AT pad can transport more fresh slurry to the reaction interface between the pad and a-GST,which results in the high RR of a-GST due to enhanced chemical reaction.展开更多
Phase change memory (PCM) has been regarded as a promising candidate for the next generation of nonvolatile memory. To decrease the power required to reset the PCM cell, titanium nitride (TIN) is preferred to be u...Phase change memory (PCM) has been regarded as a promising candidate for the next generation of nonvolatile memory. To decrease the power required to reset the PCM cell, titanium nitride (TIN) is preferred to be used as the bottom electrode of PCM due to its low thermal and suitable electrical conductivity. However, during the manufacture of PCM cell in 40 nm process node, abnormally high and discrete distribution of the resistance of TiN bottom electrode was found, which might be induced by the surface oxidation of TiN bottom electrode during the photoresist ashing process by oxygen plasma. In this work, we have studied the oxidation of TiN and found that with the increasing oxygen plasma ashing time, the thickness of the TiO2 layer became thicker and the state of the TiO2 layer changed from amorphous to crystalline, respectively. The resistance of TiN electrode contact chain with 4-5 nm TiO2 layer was confirmed to be almost three-orders of magnitude higher than that of pure TiN electrode, which led to the failure issue of PCM cell. We efficiently removed the oxidation TiO2 layer by a chemical mechanical polishing (CMP) process, and we eventually recovered the resistance of TiN bottom electrode from 1×10^5Ω/via back to 6×10^2 Ωvia and successfully achieved a uniform resistance distribution of the TiN bottom electrode.展开更多
基金Project supported by the National Basic Research Program of China(Grant Nos.2010CB934300,2011CBA00607,and 2011CB9328004)the National Integrate Circuit Research Program of China(Grant No.2009ZX02023-003)+1 种基金the National Natural Science Foundation of China(Grant Nos.60906004,60906003,61006087,61076121,61176122,and 61106001)the Funds from the Science and Technology Council of Shanghai,China(Grant No.12nm0503701)
文摘In the fabrication of phase change random access memory (PRAM) devices, high temperature thermal processes are inevitable. We investigate the thermal stability of GezSb2Te5 (GST) which is a prototypical phase change material. After high temperature process, voids of phase change material exist at the interface between Ge2Sb2Te5 and substrate in the initial open memory cell. This lower region of GezSb2Te5 is found to be a Te-rich phase change layer. Phase change memory devices are fabricated in different process conditions and examined by scanning electron microscopy and energy dispersive X-ray. It is found that hot-chuck process, nitrogen-doping process, and lower temperature inter-metal dielectric (IMD) deposition process can ease the thermal impact of line-GST PRAM cell.
基金supported by National Key Basic Research Program of China(Nos.2010CB934300,2011CBA00607,2011CB9328004)the National Integrate Circuit Research Program of China(No.2009ZX02023-003)+2 种基金the National Natural Science Foundation of China(Nos. 60906004,60906003,61006087,61076121,61176122,61106001)the Science and Technology Council of Shanghai(Nos.11DZ2261000, 11QA1407800)the Chinese Academy of Sciences(No.20110490761)
文摘Phase change random access memory (PCRAM) is one of the best candidates for next generation non- volatile memory, and phase change SiESbETe5 material is expected to be a promising material for PCRAM. In the fabrication of phase change random access memories, the etching process is a critical step. In this paper, the etching characteristics of Si2Sb2Te5 films were studied with a CF4/Ar gas mixture using a reactive ion etching system. We observed a monotonic decrease in etch rate with decreasing CF4 concentration, meanwhile, Ar concentration went up and smoother etched surfaces were obtained. It proves that CF4 determines the etch rate while Ar plays an im- portant role in defining the smoothness of the etched surface and sidewall edge acuity. Compared with GeESbETe5, it is found that Si2Sb2Te5 has a greater etch rate. Etching characteristics of Si2SbETe5 as a function of power and pressure were also studied. The smoothest surfaces and most vertical sidewalls were achieved using a CF4/Ar gas mixture ratio of 10/40, a background pressure of 40 mTorr, and power of 200 W.
基金Project supported by the National Key Basic Research Program of China(Nos.2010CB934300,2011CBA00607,2011CB9328004)the National Integrated Circuit Research Program of China(No.2009ZX02023-003)+2 种基金the National Natural Science Foundation of China(Nos. 60906004,60906003,61006087,61076121,61176122,61106001)the Science and Technology Council of Shanghai(Nos.11DZ2261000,11OA1407800.12nm0503701)the Chinese Academy of Sciences(No.20110490761)
文摘Chemical mechanical planarization(CMP) of amorphous Ge_2Sb_2Te_5(a-GST) is investigated using two typical soft pads(politex REG and AT) in acidic slurry.After CMP,it is found that the removal rate(RR) of a-GST increases with an increase of runs number for both pads.However,it achieves the higher RR and better surface quality of a-GST for an AT pad.The in-situ sheet resistance(R_s) measure shows the higher R_s of a-GST polishing can be gained after CMP using both pads and the high R_s is beneficial to lower the reset current for the PCM cells. In order to find the root cause of the different RR of a-GST polishing with different pads,the surface morphology and characteristics of both new and used pads are analyzed,it shows that the AT pad has smaller porosity size and more pore counts than that of the REG pad,and thus the AT pad can transport more fresh slurry to the reaction interface between the pad and a-GST,which results in the high RR of a-GST due to enhanced chemical reaction.
基金Project supported by the National Key Basic Research Program of China(Nos.2010CB934300,2013CBA01900,2011CBA00607,2011CB932804)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA09020402)+2 种基金the National Integrate Circuit Research Program of China(No.2009ZX02023-003)the National Natural Science Foundation of China(Nos.61176122,61106001,61261160500,61376006)the Science and Technology Council of Shanghai(Nos.12nm0503701,13DZ2295700,12QA1403900,13ZR 1447200)
文摘Phase change memory (PCM) has been regarded as a promising candidate for the next generation of nonvolatile memory. To decrease the power required to reset the PCM cell, titanium nitride (TIN) is preferred to be used as the bottom electrode of PCM due to its low thermal and suitable electrical conductivity. However, during the manufacture of PCM cell in 40 nm process node, abnormally high and discrete distribution of the resistance of TiN bottom electrode was found, which might be induced by the surface oxidation of TiN bottom electrode during the photoresist ashing process by oxygen plasma. In this work, we have studied the oxidation of TiN and found that with the increasing oxygen plasma ashing time, the thickness of the TiO2 layer became thicker and the state of the TiO2 layer changed from amorphous to crystalline, respectively. The resistance of TiN electrode contact chain with 4-5 nm TiO2 layer was confirmed to be almost three-orders of magnitude higher than that of pure TiN electrode, which led to the failure issue of PCM cell. We efficiently removed the oxidation TiO2 layer by a chemical mechanical polishing (CMP) process, and we eventually recovered the resistance of TiN bottom electrode from 1×10^5Ω/via back to 6×10^2 Ωvia and successfully achieved a uniform resistance distribution of the TiN bottom electrode.