期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于混合自组织映射神经网络的云南省山洪灾害危险性区划 被引量:1
1
作者 高耀 陈俊旭 +4 位作者 徐佳 吕丽花 梁宗玲 赵璐沅 王子尧 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第6期1067-1077,共11页
开展云南省山洪灾害危险性区划工作,以自组织映射神经网络为基础,混合Ward、PAM、CLARA、K-means和HK-means的5种方法进行二阶聚类,应用戴维森堡丁指数(Davies-Bouldin index,DBI)、轮廓系数(silhouette coefficient,SC)、聚类模型评估... 开展云南省山洪灾害危险性区划工作,以自组织映射神经网络为基础,混合Ward、PAM、CLARA、K-means和HK-means的5种方法进行二阶聚类,应用戴维森堡丁指数(Davies-Bouldin index,DBI)、轮廓系数(silhouette coefficient,SC)、聚类模型评估指数(Calinski-Harabaz index,CH)确定最佳聚类方案,之后以变异系数和变异系数一阶拆分确定最佳区划数量.结果显示:①SOM(self organizing map)+CLARA(clustering LARge applications)方法通过聚类有效性检验效果最好,其DBI值为1.0、SC值为0.9、CH值为0.3334,基于该方法得到云南省山洪灾害危险性最佳聚类数为5类,呈现类别空间分离,灾害属性相似的特征;②通过变异系数(coefficient of variation,CV)值变化及变异系数一阶差分(first-order difference,FOD)最低取值确定云南省山洪灾害危险性最佳区划单元为16个,具有形状上与地貌单元相近、数量上与行政单元相同,内部灾害发生机理相似的特征;③通过山洪灾害点、降水量、高程地貌的可视化比较,地理探测器定量分析,表明区划结果有较高的区内一致性和区间异质性. 展开更多
关键词 区划 山洪灾害危险性 两阶段混合聚类 自组织映射神经网络 云南省
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部