期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
DCVAE与DPC融合的网络入侵检测模型研究 被引量:4
1
作者 李登辉 葛丽娜 +2 位作者 王哲 樊景威 张壕 《小型微型计算机系统》 CSCD 北大核心 2024年第4期998-1006,共9页
入侵检测是主动防御网络中攻击行为的技术,以往入侵检测模型因正常网络流量与未知攻击内在特征区分度不足,导致对未知攻击识别率不够高,本文设计基于判别条件变分自编码器与密度峰值聚类算法的入侵检测模型(DCVAE-DPC).利用判别条件变... 入侵检测是主动防御网络中攻击行为的技术,以往入侵检测模型因正常网络流量与未知攻击内在特征区分度不足,导致对未知攻击识别率不够高,本文设计基于判别条件变分自编码器与密度峰值聚类算法的入侵检测模型(DCVAE-DPC).利用判别条件变分自编码器能够生成指定类别样本的能力,学习正常网络流量特征的隐空间表示并计算其重建误差,增加其与未知攻击间的特征区分度,并使用密度峰值聚类算法求出正常网络流量重建误差的分布,提高未知攻击识别率.实验结果表明,在NSL-KDD数据集中与当前流行的入侵检测模型相比,模型的分类准确率可以达到97.08%,具有更高的未知攻击检测能力,面对当前复杂网络环境,有更强的入侵检测性能. 展开更多
关键词 入侵检测 判别条件变分自编码器 密度峰值聚类算法 未知攻击识别 细粒度攻击分类
在线阅读 下载PDF
融合MultiHead Attention和BiGRU的入侵检测模型 被引量:1
2
作者 樊景威 葛丽娜 +1 位作者 张壕 李登辉 《计算机与数字工程》 2023年第1期74-80,共7页
近年来,入侵检测技术在网络安全中扮演着越来越重要的角色。目前的入侵检测模型所用的方法大部分是基于传统机器学习的浅层方法。浅层机器学习方法不能有效发掘数据特征,在入侵检测中存在一定的局限性。为此,论文提出了一种深度学习模型... 近年来,入侵检测技术在网络安全中扮演着越来越重要的角色。目前的入侵检测模型所用的方法大部分是基于传统机器学习的浅层方法。浅层机器学习方法不能有效发掘数据特征,在入侵检测中存在一定的局限性。为此,论文提出了一种深度学习模型,该模型结合了多头注意力(multiHead attention)和双向门循环单元(BiGRU)。模型使用多头注意力和双向门循环单元从空间和时间上处理网络攻击流量,有效缓解模型复杂性,同时增加模型表现力。此外,使用最大池化方法(maxpooling)来平衡训练速度和性能,不但可以提取序列的边缘特征,还能帮助扩大感受野,由于数据不平衡会影响模型性能表现,因此使用随机过采样(Random Over Sampling)方法来处理数据不平衡的问题。实验基于UNSW-NB15数据集和CIC-IDS2017数据集,并使用准确率(Accuracy)、精确率(Precision)、召回率(Recall)和f1分数作为评估指标。实验结果表明,模型性能优秀。 展开更多
关键词 多头注意力 双向门控循环单元 神经网络 入侵检测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部