为进一步降低柴油车发动机在非失火状态下的怠速抖动水平,分析和优化发动机怠速半阶次能量成分。基于“激励源–传递路径–响应”模型及柴油车半阶次抖动“鱼骨图”方法进行发动机运行稳定性分析,并重点进行燃烧差异分析及验证。结果表...为进一步降低柴油车发动机在非失火状态下的怠速抖动水平,分析和优化发动机怠速半阶次能量成分。基于“激励源–传递路径–响应”模型及柴油车半阶次抖动“鱼骨图”方法进行发动机运行稳定性分析,并重点进行燃烧差异分析及验证。结果表明引起整车车内半阶次抖动的根本原因为:各气缸喷油量轻微差异导致配对气缸燃烧指示平均有效压力(indicated mean effective pressure,IMEP)差值及燃烧激励差异,使转矩和转速波动一致性较差,从而诱使半阶次抖动发生。根据工程实际,提出一种喷油量均衡控制方法,可均衡燃烧激励转矩差异,明显抑制柴油车发动机半阶次抖动能量,振动速度可优化80.6%左右,解决车辆半阶次抖动问题。该方法适用于所有的缸内直喷柴油机非失火状态下的半阶次抖动问题,且对于车辆长期使用后喷油孔磨损加剧的情况依然保持较高稳定性。展开更多
文摘为进一步降低柴油车发动机在非失火状态下的怠速抖动水平,分析和优化发动机怠速半阶次能量成分。基于“激励源–传递路径–响应”模型及柴油车半阶次抖动“鱼骨图”方法进行发动机运行稳定性分析,并重点进行燃烧差异分析及验证。结果表明引起整车车内半阶次抖动的根本原因为:各气缸喷油量轻微差异导致配对气缸燃烧指示平均有效压力(indicated mean effective pressure,IMEP)差值及燃烧激励差异,使转矩和转速波动一致性较差,从而诱使半阶次抖动发生。根据工程实际,提出一种喷油量均衡控制方法,可均衡燃烧激励转矩差异,明显抑制柴油车发动机半阶次抖动能量,振动速度可优化80.6%左右,解决车辆半阶次抖动问题。该方法适用于所有的缸内直喷柴油机非失火状态下的半阶次抖动问题,且对于车辆长期使用后喷油孔磨损加剧的情况依然保持较高稳定性。