Blockchain-enabled cybersecurity system to ensure and strengthen decentralized digital transaction is gradually gaining popularity in the digital era for various areas like finance,transportation,healthcare,education,...Blockchain-enabled cybersecurity system to ensure and strengthen decentralized digital transaction is gradually gaining popularity in the digital era for various areas like finance,transportation,healthcare,education,and supply chain management.Blockchain interactions in the heterogeneous network have fascinated more attention due to the authentication of their digital application exchanges.However,the exponential development of storage space capabilities across the blockchain-based heterogeneous network has become an important issue in preventing blockchain distribution and the extension of blockchain nodes.There is the biggest challenge of data integrity and scalability,including significant computing complexity and inapplicable latency on regional network diversity,operating system diversity,bandwidth diversity,node diversity,etc.,for decision-making of data transactions across blockchain-based heterogeneous networks.Data security and privacy have also become the main concerns across the heterogeneous network to build smart IoT ecosystems.To address these issues,today’s researchers have explored the potential solutions of the capability of heterogeneous network devices to perform data transactions where the system stimulates their integration reliably and securely with blockchain.The key goal of this paper is to conduct a state-of-the-art and comprehensive survey on cybersecurity enhancement using blockchain in the heterogeneous network.This paper proposes a full-fledged taxonomy to identify the main obstacles,research gaps,future research directions,effective solutions,andmost relevant blockchain-enabled cybersecurity systems.In addition,Blockchain based heterogeneous network framework with cybersecurity is proposed in this paper tomeet the goal of maintaining optimal performance data transactions among organizations.Overall,this paper provides an in-depth description based on the critical analysis to overcome the existing work gaps for future research where it presents a potential cybersecurity design with key requirements of blockchain across a heterogeneous network.展开更多
The race to develop the next generation of wireless networks,known as Sixth Generation(6G)wireless,which will be operational in 2030,has already begun.To realize its full potential over the next decade,6G will undoubt...The race to develop the next generation of wireless networks,known as Sixth Generation(6G)wireless,which will be operational in 2030,has already begun.To realize its full potential over the next decade,6G will undoubtedly necessitate additional improvements that integrate existing solutions with cutting-edge ones.However,the studies about 6G are mainly limited and scattered,whereas no bibliometric study covers the 6G field.Thus,this study aims to review,examine,and summarize existing studies and research activities in 6G.This study has examined the Scopus database through a bibliometric analysis of more than 1,000 papers published between 2017 and 2021.Then,we applied the bibliometric analysis methods by including(1)document type,(2)subject area,(3)author,and(4)country of publication.The study’s results reflect the research 6G community’s trends,highlight important research challenges,and elucidate potential directions for future research in this interesting area.展开更多
In bilingual translation,attention-based Neural Machine Translation(NMT)models are used to achieve synchrony between input and output sequences and the notion of alignment.NMT model has obtained state-of-the-art perfo...In bilingual translation,attention-based Neural Machine Translation(NMT)models are used to achieve synchrony between input and output sequences and the notion of alignment.NMT model has obtained state-of-the-art performance for several language pairs.However,there has been little work exploring useful architectures for Urdu-to-English machine translation.We conducted extensive Urdu-to-English translation experiments using Long short-term memory(LSTM)/Bidirectional recurrent neural networks(Bi-RNN)/Statistical recurrent unit(SRU)/Gated recurrent unit(GRU)/Convolutional neural network(CNN)and Transformer.Experimental results show that Bi-RNN and LSTM with attention mechanism trained iteratively,with a scalable data set,make precise predictions on unseen data.The trained models yielded competitive results by achieving 62.6%and 61%accuracy and 49.67 and 47.14 BLEU scores,respectively.From a qualitative perspective,the translation of the test sets was examined manually,and it was observed that trained models tend to produce repetitive output more frequently.The attention score produced by Bi-RNN and LSTM produced clear alignment,while GRU showed incorrect translation for words,poor alignment and lack of a clear structure.Therefore,we considered refining the attention-based models by defining an additional attention-based dropout layer.Attention dropout fixes alignment errors and minimizes translation errors at the word level.After empirical demonstration and comparison with their counterparts,we found improvement in the quality of the resulting translation system and a decrease in the perplexity and over-translation score.The ability of the proposed model was evaluated using Arabic-English and Persian-English datasets as well.We empirically concluded that adding an attention-based dropout layer helps improve GRU,SRU,and Transformer translation and is considerably more efficient in translation quality and speed.展开更多
The COVID-19 pandemic has spread globally,resulting in financialinstability in many countries and reductions in the per capita grossdomestic product.Sentiment analysis is a cost-effective method for acquiringsentiment...The COVID-19 pandemic has spread globally,resulting in financialinstability in many countries and reductions in the per capita grossdomestic product.Sentiment analysis is a cost-effective method for acquiringsentiments based on household income loss,as expressed on social media.However,limited research has been conducted in this domain using theLexDeep approach.This study aimed to explore social trend analytics usingLexDeep,which is a hybrid sentiment analysis technique,on Twitter to capturethe risk of household income loss during the COVID-19 pandemic.First,tweet data were collected using Twint with relevant keywords before(9 March2019 to 17 March 2020)and during(18 March 2020 to 21 August 2021)thepandemic.Subsequently,the tweets were annotated using VADER(lexiconbased)and fed into deep learning classifiers,and experiments were conductedusing several embeddings,namely simple embedding,Global Vectors,andWord2Vec,to classify the sentiments expressed in the tweets.The performanceof each LexDeep model was evaluated and compared with that of a supportvector machine(SVM).Finally,the unemployment rates before and duringCOVID-19 were analysed to gain insights into the differences in unemploymentpercentages through social media input and analysis.The resultsdemonstrated that all LexDeep models with simple embedding outperformedthe SVM.This confirmed the superiority of the proposed LexDeep modelover a classical machine learning classifier in performing sentiment analysistasks for domain-specific sentiments.In terms of the risk of income loss,the unemployment issue is highly politicised on both the regional and globalscales;thus,if a country cannot combat this issue,the global economy will alsobe affected.Future research should develop a utility maximisation algorithmfor household welfare evaluation,given the percentage risk of income lossowing to COVID-19.展开更多
Prediction of machine failure is challenging as the dataset is often imbalanced with a low failure rate.The common approach to han-dle classification involving imbalanced data is to balance the data using a sampling a...Prediction of machine failure is challenging as the dataset is often imbalanced with a low failure rate.The common approach to han-dle classification involving imbalanced data is to balance the data using a sampling approach such as random undersampling,random oversampling,or Synthetic Minority Oversampling Technique(SMOTE)algorithms.This paper compared the classification performance of three popular classifiers(Logistic Regression,Gaussian Naïve Bayes,and Support Vector Machine)in predicting machine failure in the Oil and Gas industry.The original machine failure dataset consists of 20,473 hourly data and is imbalanced with 19945(97%)‘non-failure’and 528(3%)‘failure data’.The three independent variables to predict machine failure were pressure indicator,flow indicator,and level indicator.The accuracy of the classifiers is very high and close to 100%,but the sensitivity of all classifiers using the original dataset was close to zero.The performance of the three classifiers was then evaluated for data with different imbalance rates(10%to 50%)generated from the original data using SMOTE,SMOTE-Support Vector Machine(SMOTE-SVM)and SMOTE-Edited Nearest Neighbour(SMOTE-ENN).The classifiers were evaluated based on improvement in sensitivity and F-measure.Results showed that the sensitivity of all classifiers increases as the imbalance rate increases.SVM with radial basis function(RBF)kernel has the highest sensitivity when data is balanced(50:50)using SMOTE(Sensitivitytest=0.5686,Ftest=0.6927)compared to Naïve Bayes(Sensitivitytest=0.4033,Ftest=0.6218)and Logistic Regression(Sensitivitytest=0.4194,Ftest=0.621).Overall,the Gaussian Naïve Bayes model consistently improves sensitivity and F-measure as the imbalance ratio increases,but the sensitivity is below 50%.The classifiers performed better when data was balanced using SMOTE-SVM compared to SMOTE and SMOTE-ENN.展开更多
Question and answer websites such as Quora,Stack Overflow,Yahoo Answers and Answer Bag are used by professionals.Multiple users post questions on these websites to get the answers from domain specific professionals.Th...Question and answer websites such as Quora,Stack Overflow,Yahoo Answers and Answer Bag are used by professionals.Multiple users post questions on these websites to get the answers from domain specific professionals.These websites are multilingual meaning they are available in many different languages.Current problem for these types of websites is to handle meaningless and irrelevant content.In this paper we have worked on the Quora insincere questions(questions which are based on false assumptions or questions which are trying to make a statement rather than seeking for helpful answers)dataset in order to identify user insincere questions,so that Quora can eliminate those questions from their platform and ultimately improve the communication among users over the platform.Previously,a research was carried out with recurrent neural network and pretrained glove word embeddings,that achieved the F1 score of 0.69.The proposed study has used a pre-trained ULMFiT model.This model has outperformed the previous model with an F1 score of 0.91,which is much higher than the previous studies.展开更多
基金The authors would like to acknowledge the Institute for Big Data Analytics and Artificial Intelligence(IBDAAI),Universiti TeknologiMARA and the Ministry of Higher Education,Malaysia for the financial support through Fundamental Research Grant Scheme(FRGS)Grant No.FRGS/1/2021/ICT11/UITM/01/1.
文摘Blockchain-enabled cybersecurity system to ensure and strengthen decentralized digital transaction is gradually gaining popularity in the digital era for various areas like finance,transportation,healthcare,education,and supply chain management.Blockchain interactions in the heterogeneous network have fascinated more attention due to the authentication of their digital application exchanges.However,the exponential development of storage space capabilities across the blockchain-based heterogeneous network has become an important issue in preventing blockchain distribution and the extension of blockchain nodes.There is the biggest challenge of data integrity and scalability,including significant computing complexity and inapplicable latency on regional network diversity,operating system diversity,bandwidth diversity,node diversity,etc.,for decision-making of data transactions across blockchain-based heterogeneous networks.Data security and privacy have also become the main concerns across the heterogeneous network to build smart IoT ecosystems.To address these issues,today’s researchers have explored the potential solutions of the capability of heterogeneous network devices to perform data transactions where the system stimulates their integration reliably and securely with blockchain.The key goal of this paper is to conduct a state-of-the-art and comprehensive survey on cybersecurity enhancement using blockchain in the heterogeneous network.This paper proposes a full-fledged taxonomy to identify the main obstacles,research gaps,future research directions,effective solutions,andmost relevant blockchain-enabled cybersecurity systems.In addition,Blockchain based heterogeneous network framework with cybersecurity is proposed in this paper tomeet the goal of maintaining optimal performance data transactions among organizations.Overall,this paper provides an in-depth description based on the critical analysis to overcome the existing work gaps for future research where it presents a potential cybersecurity design with key requirements of blockchain across a heterogeneous network.
基金The authors received Universiti Malaysia Pahang Al-Sultan Abdullah(UMPSA)grant under Internal Research Grant with Grant Number PDU223209.Author received grant is:Ahmad Firdaus Website of the sponsor:https://www.ump.edu.my/en.
文摘The race to develop the next generation of wireless networks,known as Sixth Generation(6G)wireless,which will be operational in 2030,has already begun.To realize its full potential over the next decade,6G will undoubtedly necessitate additional improvements that integrate existing solutions with cutting-edge ones.However,the studies about 6G are mainly limited and scattered,whereas no bibliometric study covers the 6G field.Thus,this study aims to review,examine,and summarize existing studies and research activities in 6G.This study has examined the Scopus database through a bibliometric analysis of more than 1,000 papers published between 2017 and 2021.Then,we applied the bibliometric analysis methods by including(1)document type,(2)subject area,(3)author,and(4)country of publication.The study’s results reflect the research 6G community’s trends,highlight important research challenges,and elucidate potential directions for future research in this interesting area.
基金This work was supported by the Institute for Big Data Analytics and Artificial Intelligence(IBDAAI),Universiti Teknologi Mara,Shah Alam,Selangor.Malaysia.
文摘In bilingual translation,attention-based Neural Machine Translation(NMT)models are used to achieve synchrony between input and output sequences and the notion of alignment.NMT model has obtained state-of-the-art performance for several language pairs.However,there has been little work exploring useful architectures for Urdu-to-English machine translation.We conducted extensive Urdu-to-English translation experiments using Long short-term memory(LSTM)/Bidirectional recurrent neural networks(Bi-RNN)/Statistical recurrent unit(SRU)/Gated recurrent unit(GRU)/Convolutional neural network(CNN)and Transformer.Experimental results show that Bi-RNN and LSTM with attention mechanism trained iteratively,with a scalable data set,make precise predictions on unseen data.The trained models yielded competitive results by achieving 62.6%and 61%accuracy and 49.67 and 47.14 BLEU scores,respectively.From a qualitative perspective,the translation of the test sets was examined manually,and it was observed that trained models tend to produce repetitive output more frequently.The attention score produced by Bi-RNN and LSTM produced clear alignment,while GRU showed incorrect translation for words,poor alignment and lack of a clear structure.Therefore,we considered refining the attention-based models by defining an additional attention-based dropout layer.Attention dropout fixes alignment errors and minimizes translation errors at the word level.After empirical demonstration and comparison with their counterparts,we found improvement in the quality of the resulting translation system and a decrease in the perplexity and over-translation score.The ability of the proposed model was evaluated using Arabic-English and Persian-English datasets as well.We empirically concluded that adding an attention-based dropout layer helps improve GRU,SRU,and Transformer translation and is considerably more efficient in translation quality and speed.
基金funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University,through the Research Groups Program Grant no.(RGP-1443-0045).
文摘The COVID-19 pandemic has spread globally,resulting in financialinstability in many countries and reductions in the per capita grossdomestic product.Sentiment analysis is a cost-effective method for acquiringsentiments based on household income loss,as expressed on social media.However,limited research has been conducted in this domain using theLexDeep approach.This study aimed to explore social trend analytics usingLexDeep,which is a hybrid sentiment analysis technique,on Twitter to capturethe risk of household income loss during the COVID-19 pandemic.First,tweet data were collected using Twint with relevant keywords before(9 March2019 to 17 March 2020)and during(18 March 2020 to 21 August 2021)thepandemic.Subsequently,the tweets were annotated using VADER(lexiconbased)and fed into deep learning classifiers,and experiments were conductedusing several embeddings,namely simple embedding,Global Vectors,andWord2Vec,to classify the sentiments expressed in the tweets.The performanceof each LexDeep model was evaluated and compared with that of a supportvector machine(SVM).Finally,the unemployment rates before and duringCOVID-19 were analysed to gain insights into the differences in unemploymentpercentages through social media input and analysis.The resultsdemonstrated that all LexDeep models with simple embedding outperformedthe SVM.This confirmed the superiority of the proposed LexDeep modelover a classical machine learning classifier in performing sentiment analysistasks for domain-specific sentiments.In terms of the risk of income loss,the unemployment issue is highly politicised on both the regional and globalscales;thus,if a country cannot combat this issue,the global economy will alsobe affected.Future research should develop a utility maximisation algorithmfor household welfare evaluation,given the percentage risk of income lossowing to COVID-19.
基金supported under the research Grant(PO Number:920138936)from the Institute of Technology PETRONAS Sdn Bhd,32610,Bandar Seri Iskandar,Perak,Malaysia.
文摘Prediction of machine failure is challenging as the dataset is often imbalanced with a low failure rate.The common approach to han-dle classification involving imbalanced data is to balance the data using a sampling approach such as random undersampling,random oversampling,or Synthetic Minority Oversampling Technique(SMOTE)algorithms.This paper compared the classification performance of three popular classifiers(Logistic Regression,Gaussian Naïve Bayes,and Support Vector Machine)in predicting machine failure in the Oil and Gas industry.The original machine failure dataset consists of 20,473 hourly data and is imbalanced with 19945(97%)‘non-failure’and 528(3%)‘failure data’.The three independent variables to predict machine failure were pressure indicator,flow indicator,and level indicator.The accuracy of the classifiers is very high and close to 100%,but the sensitivity of all classifiers using the original dataset was close to zero.The performance of the three classifiers was then evaluated for data with different imbalance rates(10%to 50%)generated from the original data using SMOTE,SMOTE-Support Vector Machine(SMOTE-SVM)and SMOTE-Edited Nearest Neighbour(SMOTE-ENN).The classifiers were evaluated based on improvement in sensitivity and F-measure.Results showed that the sensitivity of all classifiers increases as the imbalance rate increases.SVM with radial basis function(RBF)kernel has the highest sensitivity when data is balanced(50:50)using SMOTE(Sensitivitytest=0.5686,Ftest=0.6927)compared to Naïve Bayes(Sensitivitytest=0.4033,Ftest=0.6218)and Logistic Regression(Sensitivitytest=0.4194,Ftest=0.621).Overall,the Gaussian Naïve Bayes model consistently improves sensitivity and F-measure as the imbalance ratio increases,but the sensitivity is below 50%.The classifiers performed better when data was balanced using SMOTE-SVM compared to SMOTE and SMOTE-ENN.
文摘Question and answer websites such as Quora,Stack Overflow,Yahoo Answers and Answer Bag are used by professionals.Multiple users post questions on these websites to get the answers from domain specific professionals.These websites are multilingual meaning they are available in many different languages.Current problem for these types of websites is to handle meaningless and irrelevant content.In this paper we have worked on the Quora insincere questions(questions which are based on false assumptions or questions which are trying to make a statement rather than seeking for helpful answers)dataset in order to identify user insincere questions,so that Quora can eliminate those questions from their platform and ultimately improve the communication among users over the platform.Previously,a research was carried out with recurrent neural network and pretrained glove word embeddings,that achieved the F1 score of 0.69.The proposed study has used a pre-trained ULMFiT model.This model has outperformed the previous model with an F1 score of 0.91,which is much higher than the previous studies.