The geological and geographical position of the Northwest Himalayas makes it a vulnerable area for mass movements particularly landslides and debris flows. Mass movements have had a substantial impact on the study are...The geological and geographical position of the Northwest Himalayas makes it a vulnerable area for mass movements particularly landslides and debris flows. Mass movements have had a substantial impact on the study area which is extending along Karakorum Highway(KKH) from Besham to Chilas. Intense seismicity, deep gorges, steep terrain and extreme climatic events trigger multiple mountain hazards along the KKH, among which debris flow is recognized as the most destructive geohazard. This study aims to prepare a field-based debris flow inventory map at a regional scale along a 200 km stretch from Besham to Chilas. A total of 117 debris flows were identified in the field, and subsequently, a point-based debris-flow inventory and catchment delineation were performed through Arc GIS analysis. Regional scale debris flow susceptibility and propagation maps were prepared using Weighted Overlay Method(WOM) and Flow-R technique sequentially. Predisposing factors include slope, slope aspect, elevation, Topographic Roughness Index(TRI), Topographic Wetness Index(TWI), stream buffer, distance to faults, lithology rainfall, curvature, and collapsed material layer. The dataset was randomly divided into training data(75%) and validation data(25%). Results were validated through the Receiver Operator Characteristics(ROC) curve. Results show that Area Under the Curve(AUC) using WOM model is 79.2%. Flow-R propagation of debris flow shows that the 13.15%, 22.94%, and 63.91% areas are very high, high, and low susceptible to debris flow respectively. The propagation predicated by Flow-R validates the naturally occurring debris flow propagation as observed in the field surveys. The output of this research will provide valuable input to the decision makers for the site selection, designing of the prevention system, and for the protection of current infrastructure.展开更多
Variations in the nutrients and water that plants require for metabolism,development,and the maintenance of cellular homeostasis are the main causes of abiotic stress in plants.It has,however,hardly ever been studied ...Variations in the nutrients and water that plants require for metabolism,development,and the maintenance of cellular homeostasis are the main causes of abiotic stress in plants.It has,however,hardly ever been studied how these transporter proteins,such as aquaporin which is responsible for food and water intake in cell plasma mem-branes,interact with one another.This review aims to explore the interactions between nutrient transporters and aquaporins during water and nutrient uptake.It also investigates how symbiotic relationships influence the plant genome’s responses to regulatory processes such as photoperiodism,senescence,and nitrogenfixation.These responses are observed in reaction to various abiotic stresses.For instance,plasma membrane transporters are upregulated during macronutrient insufficiency,tonoplast transporters are overexpressed,and aquaporins are downregulated in micronutrient deficiency.Additionally,tolerant plants often exhibit increased expression of nutrient transporters and aquaporins in response to drought,salt,and cold temperatures.To better comprehend plant stress tolerance to abiotic challenges including starvation,K famine,salt,and freezing temperatures,both classes of nutrient and water transporters should be considered at the same time.展开更多
Objective: To report presence of Leishmania major in Khyber Pakhtunkhwa of Pakistan, where cutaneous leishmaniasis(CL) is endemic and was thought to be caused by Leishmania tropica only. Methods: Biopsy samples from 4...Objective: To report presence of Leishmania major in Khyber Pakhtunkhwa of Pakistan, where cutaneous leishmaniasis(CL) is endemic and was thought to be caused by Leishmania tropica only. Methods: Biopsy samples from 432 CL suspected patients were collected from 3 southern districts of Khyber Pakhtunkhwa during years 2011–2016. Microscopy on Giemsa stained slides were done followed by amplification of the ribosomal internal transcribed spacer 1 gene. Results: Leishmania amastigotes were detected by microscopy in 308 of 432 samples(71.3%) while 374 out of 432 samples(86.6%) were positive by ribosomal internal transcribed spacer 1 PCR. Subsequent restriction fragment length polymorphism confirmed Leishmania tropica in 351 and Leishmania major in 6 biopsy samples. Conclusions: This study is the first molecular characterization of Leishmania species in southern Khyber Pakhtunkhwa. It confirmed the previous assumptions that anthroponotic CL is the major CL form present in Khyber Pakhtunkhwa province. Furthermore, this is the first report of Leishmania major from a classical anthroponotic CL endemic focus identified in rural areas of Kohat district in southern Khyber Pakhtunkhwa.展开更多
The role of the leaves of Robinia pseudoacacia L., which is widely distributed in the arid lands, on improving soil physical and chemical properties was analyzed at various incubation periods. The incubated soils adde...The role of the leaves of Robinia pseudoacacia L., which is widely distributed in the arid lands, on improving soil physical and chemical properties was analyzed at various incubation periods. The incubated soils added with 0, 25, 50 and 75 g Robinia pseudoacacia leaves were tested after consecutive incubation intervals of 6, 8 and 10 months and the different soil parameters were measured. The results showed the increases in organic matter (OM), extractable K, cation exchange capacity (CEC), aggregate stability and water holding capacity, but the decreases in pH value and bulk density after 6 months’ incubation. The gradual decrease in change rates of soil properties indicated less microbial population and organic residual mineralization under acidic conditions, which were resulted from fast decomposition of leaves after the first 6 months incubation. The increases in soil organic matter content, extractable K, CEC, aggregate stability and water holding capacity and the decreases in soil pH and bulk density provide favorable conditions for crop’s growth.展开更多
We aimed to find the toxicological impacts of Cd, Pb and Zn in single dozes and in combinations on Purslane (Portulaca oleracea) seedling. The Pursolane seedlings? grown in pots in a green house were treated with diff...We aimed to find the toxicological impacts of Cd, Pb and Zn in single dozes and in combinations on Purslane (Portulaca oleracea) seedling. The Pursolane seedlings? grown in pots in a green house were treated with different soil treatments spiked (mg/kg) with Pb (300, 400 and 500), Cd (0.5, 1 and 1.5), and Zn (250, 500, 700) alone and then in specified combinations/concentrations i.e., Cd/Pb (0.5/300, 1/400, 1.5/500), Cd/Zn (0.5/250, 1/500, 1.5/700) and Pb/Zn (300/250, 400/500, 500/ 700). The results indicated that increasing concentrations of the studied HMs in seedlings tissues significantly (p P. oleracea seedling, compared to Pb and Zn. Roots of P. oleracea seedlings were more sensitive to the studied HMs in comparison with shoot. The uptake patterns showed antagonistic impacts on each other and were reflected in response to growth parameters. The combine toxicities of Cd, Pb and Zn (Cd/Pb, Cd/Zn and Pb/Zn) were more than the toxicity due to single dose of each element but less than their additive sums.展开更多
Conversion of potato from conventional methods to wide bed planting systems may increase water and nitrogen use efficiency in commercial potato production system by reducing the amount of irrigation water and water ap...Conversion of potato from conventional methods to wide bed planting systems may increase water and nitrogen use efficiency in commercial potato production system by reducing the amount of irrigation water and water applied nitrogen fertilizer bypassing the potato root zone. Potato (Solanum tuberosum L) cv. Desiree was tested against different planting system for yield and yield components at Kaghan, a high mountainous Himalayan region ofPakistan. The experiment was carried out at Himalayan Agricultural Research Station (HARS), Kaghan during the summer season of 2005. The results showed that maximum tuber growth (88.7%), number of stems per plant (3.5), plant expansion (45.5 cm), average number of tubers per plant (10.1) and yield per hectare (12.4 t/ha) were significantly different and higher when potatoes were planted on wide bed and covered with soil from one side. Tallest plants (53.4 cm) were observed when potatoes were sown on the ridges. Maximum number of green potatoes (12.5) and injured potatoes (5.3%) were observed when the tubers were planted following local farmers’ method. Keeping in view the soil type, land slopping, we recommend sowing potatoes on relatively plain wide beds and covering it with soil from one side, for potato cultivation in the area.展开更多
Cotton is an economically important natural fiber in the world, whose seeds are used as food and fiber used in the manufacturing of textiles. Cotton is naturally a renewable synthetic fiber which is derived from petro...Cotton is an economically important natural fiber in the world, whose seeds are used as food and fiber used in the manufacturing of textiles. Cotton is naturally a renewable synthetic fiber which is derived from petroleum. Restriction in conventional breeding program to hereditary change may be because of those of information something like yield revenue and fiber quality of traits. Vitally, the genome representation of the cotton for various traits is the basic need for breeding purposes. The present review discusses the issues of conventional breeding and genomics resources & efforts are utilized to enhance the yield of cotton.展开更多
The Kaghan Valley is in the territorial jurisdiction of Mansehera District, named after a tiny village Kaghan, at the end of the valley. The valley culminates in the tree-clad high mountains and glaciers in the North-...The Kaghan Valley is in the territorial jurisdiction of Mansehera District, named after a tiny village Kaghan, at the end of the valley. The valley culminates in the tree-clad high mountains and glaciers in the North-East with varying altitudes from 1 to 5 thousand meters above sea level. The region is relatively active geophysically, hydrologically and biologically diverse by virtue of the altitude and aspect-driven variability in energy and moisture. In such region a better understanding of changes in land resources, production of agronomic and horticultural crops, use of timber and non-timber products, and livestock structure/composition have important implications and understanding these changes along with the indigenous knowledge of mountain people which, is key to sustainable development of the Himalayan region. Our results showed that the main causes of lowest agriculture production in the area are poor crop management in context of the mountains, drought spells, low soil fertility, land fragmentation and tenancy status of the agricultural land. Off season vegetables cultivation on the sloppy land leads to sever soil erosion and soil land degradation of this mountain ecosystem. Overgrazing during the summer season is another problem as the pastures are visited both by the Afghan and local nomads without relating with carrying capacity of the alpine meadows. The overgrazed soil is usually subject to rainfalls and severe soil erosion. Any use of resources of such fragile rare high mountain ecosystem requires a great sense of responsibility but in this case the forest resources are being plundered and are used roughly. We recommend adequate use of agricultural inputs, specific crop management practices for mountain agriculture. Local social welfare organizations should work to create awareness about the sustainable use of natural resources. The government should resolve the ownership problem of land as common property keeping in mind the customary laws of the region to make sure the involvement of all stakeholders.展开更多
This paper investigates and provides a critical analysis of the toluene biofilter model developed by Li and De Visscher. The model simulation results have been reproduced and compared with several sets of experimental...This paper investigates and provides a critical analysis of the toluene biofilter model developed by Li and De Visscher. The model simulation results have been reproduced and compared with several sets of experimental data from literature. Three different model variations are considered: model with no substrate inhibition, with substrate inhibition, and with air flow rate modification. A sensitivity analysis has been performed on model to study the effect of important parameters on the removal efficiency. Model limitations and improvements have been highlighted.展开更多
Extensive research efforts are currently devoted to developing and improving conventional technologies for water treatment. Membrane-based water treatment technologies are among the most preferred options due to their...Extensive research efforts are currently devoted to developing and improving conventional technologies for water treatment. Membrane-based water treatment technologies are among the most preferred options due to their commercial success, simple operation, low energy and space requirements, and high separation efficiency. Despite the advances made in membrane-based technologies, fouling remains a critical challenge. Fouling occurs upon the accumulation of unwanted impurities on the membrane surface and within the membrane pores which results in a significant decline in the membrane permeate flux. To alleviate the operational challenges from fouling, surface modification to develop antifouling membranes appears to be an effective technique. A comprehensive review of the surface modification techniques for the development of antifouling membranes is provided in this paper. Chemical surface modification techniques (grafting and plasma treatment), physical modification techniques (blending, coating, adsorption, and thermal treatment), and combined physical and chemical modification techniques have been discussed. Moreover, the challenges related to surface modification and the future research directions are addressed.展开更多
Heterojunction design in a two-dimensional(2D)fashion has been deemed beneficial for improving the photocatalytic activity of g-C_(3)N_(4)because of the promoted interfacial charge transfer,yet still facing challenges...Heterojunction design in a two-dimensional(2D)fashion has been deemed beneficial for improving the photocatalytic activity of g-C_(3)N_(4)because of the promoted interfacial charge transfer,yet still facing challenges.Herein,we construct a novel 2D/2D Cu_(3)P nanosheet/P-doped g-C_(3)N_(4)(PCN)nanosheet heterojunction photocatalyst(PCN/Cu_(3)P)through a simple in-situ phosphorization treatment of 2D/2D CuS/g-C_(3)N_(4)composite for photocatalytic H2 evolution.We demonstrate that the 2D lamellar structure of both CuS and g-C_(3)N_(4)could be well reserved in the phosphorization process,while CuS and g-C_(3)N_(4)in-situ transformed into Cu_(3)P and PCN,respectively,leading to the formation of PCN/Cu_(3)P tight 2D/2D heterojunction.Owing to the large contact area provided by intimate face-to-face 2D/2D structure,the PCN/Cu_(3)P photocatalyst exhibits significantly enhanced charge separation efficiency,thus achieving a boosted visible-light-driven photocatalytic behavior.The highest rate for H2 evolution reaches 5.12 umol·h^(-1),nearly 24 times and 368 times higher than that of pristine PCN and g-C_(3)N_(4),respectively.This work represents an excellent example in elaborately con-structing g-C_(3)N_(4)-based 2D/2D heterostructure and could be extended to other photocatalyst/co-catalyst system.展开更多
In this paper, the MHD peristaltic flow inside wavy walls of an asymmetric channel is investigated, where the walls of the channel are moving with peristaltic wave velocity along the channel length. During this invest...In this paper, the MHD peristaltic flow inside wavy walls of an asymmetric channel is investigated, where the walls of the channel are moving with peristaltic wave velocity along the channel length. During this investigation,the electrical conductivity both in Lorentz force and Joule heating is taken to be temperature dependent. Also, the long wavelength and low Reynolds number assumptions are utilized to reduce the governing partial differential equations into a set of coupled nonlinear ordinary differential equations. The new set of obtained equations is then numerically solved using the generalized differential quadrature method(GDQM). This is the first attempt to solve the nonlinear equations arising in the peristaltic flows using this method in combination with the Newton-Raphson technique. Moreover, in order to check the accuracy of the proposed numerical method, our results are compared with the results of built-in Mathematica command NDSolve. Taking Joule heating and viscous dissipation into account, the effects of various parameters appearing in the problem are used to discuss the fluid flow characteristics and heat transfer in the electrically conducting fluids graphically. In presence of variable electrical conductivity, velocity and temperature profiles are highly decreasing in nature when the intensity of the electrical conductivity parameter is strengthened.展开更多
In this research paper, the forced convective heat transfer enhancement of a Suzuki Mehran(VXR) 2016 radiator(heat exchanger) along with pressure drop and friction factor by utilizing Zinc oxide(Zn O) water based nano...In this research paper, the forced convective heat transfer enhancement of a Suzuki Mehran(VXR) 2016 radiator(heat exchanger) along with pressure drop and friction factor by utilizing Zinc oxide(Zn O) water based nanofluids has been experimentally studied. Three types of nanofluids with different volumetric concentrations of Zn O nanoparticles(0–0.3%) were employed in order to understand its effect on heat transfer enhancement. The experimental setup was completely designed as closely as possible to the car cooling system. The experimentation has been done under laminar flow conditions(186≤Re≤1127) at different fluid volume flow rates(2–12 L/min) and constant fluid inlet temperature(70°C) to the automobile radiator. A maximum enhancement in heat transfer rate, overall heat transfer coefficient and Nusselt number was obtained up to 41%, 50% and 31% by using nanofluid with 0.2% volumetric concentration of nanoparticles respectively. On the other hand, the mean enhancement in pressure drop and friction factor was obtained up to 47% and 46% by using nanofluid with the same volumetric concentration of nanoparticles i.e. 0.2% respectively. The experimental results also revealed that the heat transfer rate, overall heat transfer coefficient and Nusselt number of nanofluids increases by increasing the volume flow rates and volumetric concentration of nanoparticles. However, these thermal performance parameters of nanofluids started to decline when the volumetric concentration of nanoparticles was increased from 0.2% to 0.3%. Furthermore, pressure drop and friction factor of nanofluids increase by increasing the volumetric concentration of nanoparticles, while pressure drop increases and friction factor decreases by increasing the volume flow rate of nanofluids respectively. At the end, the thermal efficiency of automobile radiator with high cooling rates was obtained by using nanofluid with 0.2% volumetric concentration of nanoparticles.展开更多
Objective:To document the traditional uses of wild plants as medicine by the villagers along the coastal highway from Karachi to Uthal.Methods:Information presented in this research was gathered from the local people ...Objective:To document the traditional uses of wild plants as medicine by the villagers along the coastal highway from Karachi to Uthal.Methods:Information presented in this research was gathered from the local people using an integrated approach of floral collections,discussions with the elderly people and traditional medicinal practitioners using semi-structured questionnaire.Results:27 families in the targeted area.Majority of the plants(54%)from this coastal plant diversity were xerophytes followed by halophytes/xero-halophytes(40%)and glycophytes(6%).The most important uses included gastrointestinal diseases,pain killer,arthritis,skin and sexual disorders,asthma and expectorant.The above-ground parts of plants i.e.leaf,stem and fruit/seed as decoction are used most commonly to cure 23 ailments but root was also used in some cases.Conclusions:Ethno-medicinal surveys indicated the medicinal importance of 54 plant species from phyto-medicinal claim and it is hoped that it will lead to detailed chemical and pharmacological evaluations.This may also lead to a discovery of novel bioactive compounds for food and pharmaceutical industries.This study helps in documenting therapeutic uses of herbal remedies with new pevhayltou-amtioendsic.iTnhali sc lmaiamy aanldso i tl iesa hdo tpoe da tdhiastc iot vweirlyl loeaf dn otov edle tbaiioleadc tcihveem ciocmalp aonudn pdhs afromr afcoooldog aicnadl pharmaceutical industries.展开更多
基金financially supported by the Higher Education Commission of Pakistan (HEC) grant under National Research Program for Universities (NRPU) with No: (20-14681/NRPU/R&D/HEC/20212021)。
文摘The geological and geographical position of the Northwest Himalayas makes it a vulnerable area for mass movements particularly landslides and debris flows. Mass movements have had a substantial impact on the study area which is extending along Karakorum Highway(KKH) from Besham to Chilas. Intense seismicity, deep gorges, steep terrain and extreme climatic events trigger multiple mountain hazards along the KKH, among which debris flow is recognized as the most destructive geohazard. This study aims to prepare a field-based debris flow inventory map at a regional scale along a 200 km stretch from Besham to Chilas. A total of 117 debris flows were identified in the field, and subsequently, a point-based debris-flow inventory and catchment delineation were performed through Arc GIS analysis. Regional scale debris flow susceptibility and propagation maps were prepared using Weighted Overlay Method(WOM) and Flow-R technique sequentially. Predisposing factors include slope, slope aspect, elevation, Topographic Roughness Index(TRI), Topographic Wetness Index(TWI), stream buffer, distance to faults, lithology rainfall, curvature, and collapsed material layer. The dataset was randomly divided into training data(75%) and validation data(25%). Results were validated through the Receiver Operator Characteristics(ROC) curve. Results show that Area Under the Curve(AUC) using WOM model is 79.2%. Flow-R propagation of debris flow shows that the 13.15%, 22.94%, and 63.91% areas are very high, high, and low susceptible to debris flow respectively. The propagation predicated by Flow-R validates the naturally occurring debris flow propagation as observed in the field surveys. The output of this research will provide valuable input to the decision makers for the site selection, designing of the prevention system, and for the protection of current infrastructure.
基金supported by the Natural Science Foundation of Jiangsu Higher Education Institutions of China(23KJA210003)the Open Project Program of Joint International Research Laboratory of Agriculture and Agri-Product Safety,the Ministry of Education of China,Yangzhou University(JILAR-KF202202).
文摘Variations in the nutrients and water that plants require for metabolism,development,and the maintenance of cellular homeostasis are the main causes of abiotic stress in plants.It has,however,hardly ever been studied how these transporter proteins,such as aquaporin which is responsible for food and water intake in cell plasma mem-branes,interact with one another.This review aims to explore the interactions between nutrient transporters and aquaporins during water and nutrient uptake.It also investigates how symbiotic relationships influence the plant genome’s responses to regulatory processes such as photoperiodism,senescence,and nitrogenfixation.These responses are observed in reaction to various abiotic stresses.For instance,plasma membrane transporters are upregulated during macronutrient insufficiency,tonoplast transporters are overexpressed,and aquaporins are downregulated in micronutrient deficiency.Additionally,tolerant plants often exhibit increased expression of nutrient transporters and aquaporins in response to drought,salt,and cold temperatures.To better comprehend plant stress tolerance to abiotic challenges including starvation,K famine,salt,and freezing temperatures,both classes of nutrient and water transporters should be considered at the same time.
基金grateful to Higher Education Commission Government of Pakistan for providing fund Grant No: 1384 to Kohat university of Science and technology Kohat,Pakistangrateful to French Embassy,Islamabad for funding under their split Ph D fellowship programs,a 6 months Ph D fellowship to Dr. Mubbashir Hussain at ANSES,Animal Health Laboratory,Maisons-Alfort,France
文摘Objective: To report presence of Leishmania major in Khyber Pakhtunkhwa of Pakistan, where cutaneous leishmaniasis(CL) is endemic and was thought to be caused by Leishmania tropica only. Methods: Biopsy samples from 432 CL suspected patients were collected from 3 southern districts of Khyber Pakhtunkhwa during years 2011–2016. Microscopy on Giemsa stained slides were done followed by amplification of the ribosomal internal transcribed spacer 1 gene. Results: Leishmania amastigotes were detected by microscopy in 308 of 432 samples(71.3%) while 374 out of 432 samples(86.6%) were positive by ribosomal internal transcribed spacer 1 PCR. Subsequent restriction fragment length polymorphism confirmed Leishmania tropica in 351 and Leishmania major in 6 biopsy samples. Conclusions: This study is the first molecular characterization of Leishmania species in southern Khyber Pakhtunkhwa. It confirmed the previous assumptions that anthroponotic CL is the major CL form present in Khyber Pakhtunkhwa province. Furthermore, this is the first report of Leishmania major from a classical anthroponotic CL endemic focus identified in rural areas of Kohat district in southern Khyber Pakhtunkhwa.
文摘The role of the leaves of Robinia pseudoacacia L., which is widely distributed in the arid lands, on improving soil physical and chemical properties was analyzed at various incubation periods. The incubated soils added with 0, 25, 50 and 75 g Robinia pseudoacacia leaves were tested after consecutive incubation intervals of 6, 8 and 10 months and the different soil parameters were measured. The results showed the increases in organic matter (OM), extractable K, cation exchange capacity (CEC), aggregate stability and water holding capacity, but the decreases in pH value and bulk density after 6 months’ incubation. The gradual decrease in change rates of soil properties indicated less microbial population and organic residual mineralization under acidic conditions, which were resulted from fast decomposition of leaves after the first 6 months incubation. The increases in soil organic matter content, extractable K, CEC, aggregate stability and water holding capacity and the decreases in soil pH and bulk density provide favorable conditions for crop’s growth.
文摘We aimed to find the toxicological impacts of Cd, Pb and Zn in single dozes and in combinations on Purslane (Portulaca oleracea) seedling. The Pursolane seedlings? grown in pots in a green house were treated with different soil treatments spiked (mg/kg) with Pb (300, 400 and 500), Cd (0.5, 1 and 1.5), and Zn (250, 500, 700) alone and then in specified combinations/concentrations i.e., Cd/Pb (0.5/300, 1/400, 1.5/500), Cd/Zn (0.5/250, 1/500, 1.5/700) and Pb/Zn (300/250, 400/500, 500/ 700). The results indicated that increasing concentrations of the studied HMs in seedlings tissues significantly (p P. oleracea seedling, compared to Pb and Zn. Roots of P. oleracea seedlings were more sensitive to the studied HMs in comparison with shoot. The uptake patterns showed antagonistic impacts on each other and were reflected in response to growth parameters. The combine toxicities of Cd, Pb and Zn (Cd/Pb, Cd/Zn and Pb/Zn) were more than the toxicity due to single dose of each element but less than their additive sums.
文摘Conversion of potato from conventional methods to wide bed planting systems may increase water and nitrogen use efficiency in commercial potato production system by reducing the amount of irrigation water and water applied nitrogen fertilizer bypassing the potato root zone. Potato (Solanum tuberosum L) cv. Desiree was tested against different planting system for yield and yield components at Kaghan, a high mountainous Himalayan region ofPakistan. The experiment was carried out at Himalayan Agricultural Research Station (HARS), Kaghan during the summer season of 2005. The results showed that maximum tuber growth (88.7%), number of stems per plant (3.5), plant expansion (45.5 cm), average number of tubers per plant (10.1) and yield per hectare (12.4 t/ha) were significantly different and higher when potatoes were planted on wide bed and covered with soil from one side. Tallest plants (53.4 cm) were observed when potatoes were sown on the ridges. Maximum number of green potatoes (12.5) and injured potatoes (5.3%) were observed when the tubers were planted following local farmers’ method. Keeping in view the soil type, land slopping, we recommend sowing potatoes on relatively plain wide beds and covering it with soil from one side, for potato cultivation in the area.
文摘Cotton is an economically important natural fiber in the world, whose seeds are used as food and fiber used in the manufacturing of textiles. Cotton is naturally a renewable synthetic fiber which is derived from petroleum. Restriction in conventional breeding program to hereditary change may be because of those of information something like yield revenue and fiber quality of traits. Vitally, the genome representation of the cotton for various traits is the basic need for breeding purposes. The present review discusses the issues of conventional breeding and genomics resources & efforts are utilized to enhance the yield of cotton.
文摘The Kaghan Valley is in the territorial jurisdiction of Mansehera District, named after a tiny village Kaghan, at the end of the valley. The valley culminates in the tree-clad high mountains and glaciers in the North-East with varying altitudes from 1 to 5 thousand meters above sea level. The region is relatively active geophysically, hydrologically and biologically diverse by virtue of the altitude and aspect-driven variability in energy and moisture. In such region a better understanding of changes in land resources, production of agronomic and horticultural crops, use of timber and non-timber products, and livestock structure/composition have important implications and understanding these changes along with the indigenous knowledge of mountain people which, is key to sustainable development of the Himalayan region. Our results showed that the main causes of lowest agriculture production in the area are poor crop management in context of the mountains, drought spells, low soil fertility, land fragmentation and tenancy status of the agricultural land. Off season vegetables cultivation on the sloppy land leads to sever soil erosion and soil land degradation of this mountain ecosystem. Overgrazing during the summer season is another problem as the pastures are visited both by the Afghan and local nomads without relating with carrying capacity of the alpine meadows. The overgrazed soil is usually subject to rainfalls and severe soil erosion. Any use of resources of such fragile rare high mountain ecosystem requires a great sense of responsibility but in this case the forest resources are being plundered and are used roughly. We recommend adequate use of agricultural inputs, specific crop management practices for mountain agriculture. Local social welfare organizations should work to create awareness about the sustainable use of natural resources. The government should resolve the ownership problem of land as common property keeping in mind the customary laws of the region to make sure the involvement of all stakeholders.
文摘This paper investigates and provides a critical analysis of the toluene biofilter model developed by Li and De Visscher. The model simulation results have been reproduced and compared with several sets of experimental data from literature. Three different model variations are considered: model with no substrate inhibition, with substrate inhibition, and with air flow rate modification. A sensitivity analysis has been performed on model to study the effect of important parameters on the removal efficiency. Model limitations and improvements have been highlighted.
文摘Extensive research efforts are currently devoted to developing and improving conventional technologies for water treatment. Membrane-based water treatment technologies are among the most preferred options due to their commercial success, simple operation, low energy and space requirements, and high separation efficiency. Despite the advances made in membrane-based technologies, fouling remains a critical challenge. Fouling occurs upon the accumulation of unwanted impurities on the membrane surface and within the membrane pores which results in a significant decline in the membrane permeate flux. To alleviate the operational challenges from fouling, surface modification to develop antifouling membranes appears to be an effective technique. A comprehensive review of the surface modification techniques for the development of antifouling membranes is provided in this paper. Chemical surface modification techniques (grafting and plasma treatment), physical modification techniques (blending, coating, adsorption, and thermal treatment), and combined physical and chemical modification techniques have been discussed. Moreover, the challenges related to surface modification and the future research directions are addressed.
基金We acknowledge the support from the National Natural Science Foundation of China(Nos.51876173 and 52142604)the Natural Science Foundation of Jiangsu Province(No.BK20190054)+2 种基金the Suzhou Science and Technology Program(SYG202101)Fok Ying-Tung Education Foundation(No.171048)the China Fundamental Research Funds for the Central Universities.
文摘Heterojunction design in a two-dimensional(2D)fashion has been deemed beneficial for improving the photocatalytic activity of g-C_(3)N_(4)because of the promoted interfacial charge transfer,yet still facing challenges.Herein,we construct a novel 2D/2D Cu_(3)P nanosheet/P-doped g-C_(3)N_(4)(PCN)nanosheet heterojunction photocatalyst(PCN/Cu_(3)P)through a simple in-situ phosphorization treatment of 2D/2D CuS/g-C_(3)N_(4)composite for photocatalytic H2 evolution.We demonstrate that the 2D lamellar structure of both CuS and g-C_(3)N_(4)could be well reserved in the phosphorization process,while CuS and g-C_(3)N_(4)in-situ transformed into Cu_(3)P and PCN,respectively,leading to the formation of PCN/Cu_(3)P tight 2D/2D heterojunction.Owing to the large contact area provided by intimate face-to-face 2D/2D structure,the PCN/Cu_(3)P photocatalyst exhibits significantly enhanced charge separation efficiency,thus achieving a boosted visible-light-driven photocatalytic behavior.The highest rate for H2 evolution reaches 5.12 umol·h^(-1),nearly 24 times and 368 times higher than that of pristine PCN and g-C_(3)N_(4),respectively.This work represents an excellent example in elaborately con-structing g-C_(3)N_(4)-based 2D/2D heterostructure and could be extended to other photocatalyst/co-catalyst system.
文摘In this paper, the MHD peristaltic flow inside wavy walls of an asymmetric channel is investigated, where the walls of the channel are moving with peristaltic wave velocity along the channel length. During this investigation,the electrical conductivity both in Lorentz force and Joule heating is taken to be temperature dependent. Also, the long wavelength and low Reynolds number assumptions are utilized to reduce the governing partial differential equations into a set of coupled nonlinear ordinary differential equations. The new set of obtained equations is then numerically solved using the generalized differential quadrature method(GDQM). This is the first attempt to solve the nonlinear equations arising in the peristaltic flows using this method in combination with the Newton-Raphson technique. Moreover, in order to check the accuracy of the proposed numerical method, our results are compared with the results of built-in Mathematica command NDSolve. Taking Joule heating and viscous dissipation into account, the effects of various parameters appearing in the problem are used to discuss the fluid flow characteristics and heat transfer in the electrically conducting fluids graphically. In presence of variable electrical conductivity, velocity and temperature profiles are highly decreasing in nature when the intensity of the electrical conductivity parameter is strengthened.
基金Higher Education CommissionIslamabadPakistan for providing financial support[Grant No.21-2245/SRGP/HRD/HEC/2018]。
文摘In this research paper, the forced convective heat transfer enhancement of a Suzuki Mehran(VXR) 2016 radiator(heat exchanger) along with pressure drop and friction factor by utilizing Zinc oxide(Zn O) water based nanofluids has been experimentally studied. Three types of nanofluids with different volumetric concentrations of Zn O nanoparticles(0–0.3%) were employed in order to understand its effect on heat transfer enhancement. The experimental setup was completely designed as closely as possible to the car cooling system. The experimentation has been done under laminar flow conditions(186≤Re≤1127) at different fluid volume flow rates(2–12 L/min) and constant fluid inlet temperature(70°C) to the automobile radiator. A maximum enhancement in heat transfer rate, overall heat transfer coefficient and Nusselt number was obtained up to 41%, 50% and 31% by using nanofluid with 0.2% volumetric concentration of nanoparticles respectively. On the other hand, the mean enhancement in pressure drop and friction factor was obtained up to 47% and 46% by using nanofluid with the same volumetric concentration of nanoparticles i.e. 0.2% respectively. The experimental results also revealed that the heat transfer rate, overall heat transfer coefficient and Nusselt number of nanofluids increases by increasing the volume flow rates and volumetric concentration of nanoparticles. However, these thermal performance parameters of nanofluids started to decline when the volumetric concentration of nanoparticles was increased from 0.2% to 0.3%. Furthermore, pressure drop and friction factor of nanofluids increase by increasing the volumetric concentration of nanoparticles, while pressure drop increases and friction factor decreases by increasing the volume flow rate of nanofluids respectively. At the end, the thermal efficiency of automobile radiator with high cooling rates was obtained by using nanofluid with 0.2% volumetric concentration of nanoparticles.
基金Supported by Pakistan Academy of Sciences(Grant no:5-9/PAS,2010).
文摘Objective:To document the traditional uses of wild plants as medicine by the villagers along the coastal highway from Karachi to Uthal.Methods:Information presented in this research was gathered from the local people using an integrated approach of floral collections,discussions with the elderly people and traditional medicinal practitioners using semi-structured questionnaire.Results:27 families in the targeted area.Majority of the plants(54%)from this coastal plant diversity were xerophytes followed by halophytes/xero-halophytes(40%)and glycophytes(6%).The most important uses included gastrointestinal diseases,pain killer,arthritis,skin and sexual disorders,asthma and expectorant.The above-ground parts of plants i.e.leaf,stem and fruit/seed as decoction are used most commonly to cure 23 ailments but root was also used in some cases.Conclusions:Ethno-medicinal surveys indicated the medicinal importance of 54 plant species from phyto-medicinal claim and it is hoped that it will lead to detailed chemical and pharmacological evaluations.This may also lead to a discovery of novel bioactive compounds for food and pharmaceutical industries.This study helps in documenting therapeutic uses of herbal remedies with new pevhayltou-amtioendsic.iTnhali sc lmaiamy aanldso i tl iesa hdo tpoe da tdhiastc iot vweirlyl loeaf dn otov edle tbaiioleadc tcihveem ciocmalp aonudn pdhs afromr afcoooldog aicnadl pharmaceutical industries.