期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
A Hybrid Cybersecurity Algorithm for Digital Image Transmission over Advanced Communication Channel Models 被引量:1
1
作者 Naglaa F.Soliman Fatma E.Fadl-Allah +3 位作者 walid el-shafai Mahmoud I.Aly Maali Alabdulhafith Fathi E.Abd El-Samie 《Computers, Materials & Continua》 SCIE EI 2024年第4期201-241,共41页
The efficient transmission of images,which plays a large role inwireless communication systems,poses a significant challenge in the growth of multimedia technology.High-quality images require well-tuned communication ... The efficient transmission of images,which plays a large role inwireless communication systems,poses a significant challenge in the growth of multimedia technology.High-quality images require well-tuned communication standards.The Single Carrier Frequency Division Multiple Access(SC-FDMA)is adopted for broadband wireless communications,because of its low sensitivity to carrier frequency offsets and low Peak-to-Average Power Ratio(PAPR).Data transmission through open-channel networks requires much concentration on security,reliability,and integrity.The data need a space away fromunauthorized access,modification,or deletion.These requirements are to be fulfilled by digital image watermarking and encryption.This paper ismainly concerned with secure image communication over the wireless SC-FDMA systemas an adopted communication standard.It introduces a robust image communication framework over SC-FDMA that comprises digital image watermarking and encryption to improve image security,while maintaining a high-quality reconstruction of images at the receiver side.The proposed framework allows image watermarking based on the Discrete Cosine Transform(DCT)merged with the Singular Value Decomposition(SVD)in the so-called DCT-SVD watermarking.In addition,image encryption is implemented based on chaos and DNA encoding.The encrypted watermarked images are then transmitted through the wireless SC-FDMA system.The linearMinimumMean Square Error(MMSE)equalizer is investigated in this paper to mitigate the effect of channel fading and noise on the transmitted images.Two subcarrier mapping schemes,namely localized and interleaved schemes,are compared in this paper.The study depends on different channelmodels,namely PedestrianAandVehicularA,with a modulation technique namedQuadratureAmplitude Modulation(QAM).Extensive simulation experiments are conducted and introduced in this paper for efficient transmission of encrypted watermarked images.In addition,different variants of SC-FDMA based on the Discrete Wavelet Transform(DWT),Discrete Cosine Transform(DCT),and Fast Fourier Transform(FFT)are considered and compared for the image communication task.The simulation results and comparison demonstrate clearly that DWT-SC-FDMAis better suited to the transmission of the digital images in the case of PedestrianAchannels,while the DCT-SC-FDMA is better suited to the transmission of the digital images in the case of Vehicular A channels. 展开更多
关键词 Cybersecurity applications image transmission channel models modulation techniques watermarking and encryption
在线阅读 下载PDF
Enhancing Early Detection of Lung Cancer through Advanced Image Processing Techniques and Deep Learning Architectures for CT Scans
2
作者 Nahed Tawfik Heba M.Emara +3 位作者 walid el-shafai Naglaa F.Soliman Abeer D.Algarni Fathi EAbd El-Samie 《Computers, Materials & Continua》 SCIE EI 2024年第10期271-307,共37页
Lung cancer remains a major concern in modern oncology due to its high mortality rates and multifaceted origins,including hereditary factors and various clinical changes.It stands as the deadliest type of cancer and a... Lung cancer remains a major concern in modern oncology due to its high mortality rates and multifaceted origins,including hereditary factors and various clinical changes.It stands as the deadliest type of cancer and a significant cause of cancer-related deaths globally.Early diagnosis enables healthcare providers to administer appropriate treatment measures promptly and accurately,leading to improved prognosis and higher survival rates.The significant increase in both the incidence and mortality rates of lung cancer,particularly its ranking as the second most prevalent cancer among women worldwide,underscores the need for comprehensive research into efficient screening methods.Advances in diagnostic techniques,particularly the use of computed tomography(CT)scans,have revolutionized the identification of lung cancer.CT scans are renowned for their ability to provide high-resolution images and are particularly effective in detecting small,calcified areas,crucial for identifying earlystage lung cancer.Consequently,there is growing interest in enhancing computer-aided detection(CAD)systems.These algorithms assist radiologists by reducing false-positive interpretations and improving the accuracy of early cancer diagnosis.This study aims to enhance the effectiveness of CAD systems through various methods.Initially,the Contrast Limited Adaptive Histogram Equalization(CLAHE)algorithm is employed to preprocess CT scan images,thereby improving their visual quality.Further refinement is achieved by integrating different optimization strategies with the CLAHE method.The CutMix data augmentation technique is applied to boost the performance of the proposed model.A comparative analysis is conducted using deep learning architectures such as InceptionV3,ResNet101,Xception,and EfficientNet.The study evaluates the performance of these architectures in image classification tasks,both with and without the implementation of the CLAHE algorithm.The empirical findings of the study demonstrate a significant reduction in the false positive rate(FPR)and an overall enhancement in diagnostic accuracy.This research not only contributes to the field of medical imaging but also holds significant implications for the early detection and treatment of lung cancer,ultimately aiming to reduce its mortality rates. 展开更多
关键词 Lung cancer detection CLAHE algorithm optimization deep learning CLASSIFICATION feature extraction healthcare applications
在线阅读 下载PDF
Efficient Deep-Learning-Based Autoencoder Denoising Approach for Medical Image Diagnosis 被引量:4
3
作者 walid el-shafai Samy Abd El-Nabi +4 位作者 El-Sayed MEl-Rabaie Anas M.Ali Naglaa F.Soliman Abeer D.Algarni Fathi E.Abd El-Samie 《Computers, Materials & Continua》 SCIE EI 2022年第3期6107-6125,共19页
Effective medical diagnosis is dramatically expensive,especially in third-world countries.One of the common diseases is pneumonia,and because of the remarkable similarity between its types and the limited number of me... Effective medical diagnosis is dramatically expensive,especially in third-world countries.One of the common diseases is pneumonia,and because of the remarkable similarity between its types and the limited number of medical images for recent diseases related to pneumonia,themedical diagnosis of these diseases is a significant challenge.Hence,transfer learning represents a promising solution in transferring knowledge from generic tasks to specific tasks.Unfortunately,experimentation and utilization of different models of transfer learning do not achieve satisfactory results.In this study,we suggest the implementation of an automatic detectionmodel,namelyCADTra,to efficiently diagnose pneumonia-related diseases.This model is based on classification,denoising autoencoder,and transfer learning.Firstly,pre-processing is employed to prepare the medical images.It depends on an autoencoder denoising(AD)algorithm with a modified loss function depending on a Gaussian distribution for decoder output to maximize the chances for recovering inputs and clearly demonstrate their features,in order to improve the diagnosis process.Then,classification is performed using a transfer learning model and a four-layer convolution neural network(FCNN)to detect pneumonia.The proposed model supports binary classification of chest computed tomography(CT)images and multi-class classification of chest X-ray images.Finally,a comparative study is introduced for the classification performance with and without the denoising process.The proposed model achieves precisions of 98%and 99%for binary classification and multi-class classification,respectively,with the different ratios for training and testing.To demonstrate the efficiency and superiority of the proposed CADTra model,it is compared with some recent state-of-the-art CNN models.The achieved outcomes prove that the suggested model can help radiologists to detect pneumonia-related diseases and improve the diagnostic efficiency compared to the existing diagnosis models. 展开更多
关键词 Medical images CADTra AD CT and X-ray images autoencoder
在线阅读 下载PDF
An Efficient CNN-Based Automated Diagnosis Framework from COVID-19 CT Images 被引量:2
4
作者 walid el-shafai Noha A.El-Hag +4 位作者 Ghada M.El-Banby Ashraf A.M.Khalaf Naglaa F.Soliman Abeer D.Algarni Fathi E.Abd El-Samie 《Computers, Materials & Continua》 SCIE EI 2021年第10期1323-1341,共19页
Corona Virus Disease-2019(COVID-19)continues to spread rapidly in the world.It has dramatically affected daily lives,public health,and the world economy.This paper presents a segmentation and classification framework ... Corona Virus Disease-2019(COVID-19)continues to spread rapidly in the world.It has dramatically affected daily lives,public health,and the world economy.This paper presents a segmentation and classification framework of COVID-19 images based on deep learning.Firstly,the classification process is employed to discriminate between COVID-19,non-COVID,and pneumonia by Convolutional Neural Network(CNN).Then,the segmentation process is applied for COVID-19 and pneumonia CT images.Finally,the resulting segmented images are used to identify the infected region,whether COVID-19 or pneumonia.The proposed CNN consists of four Convolutional(Conv)layers,four batch normalization layers,and four Rectified Linear Units(ReLUs).The sizes of Conv layer used filters are 8,16,32,and 64.Four maxpooling layers are employed with a stride of 2 and a 2×2 window.The classification layer comprises a Fully-Connected(FC)layer and a soft-max activation function used to take the classification decision.A novel saliencybased region detection algorithm and an active contour segmentation strategy are applied to segment COVID-19 and pneumonia CT images.The acquired findings substantiate the efficacy of the proposed framework for helping the specialists in automated diagnosis applications. 展开更多
关键词 CLASSIFICATION SEGMENTATION COVID-19 CNN deep learning diagnosis applications
在线阅读 下载PDF
An Efficient Medical Image Deep Fusion Model Based on Convolutional Neural Networks 被引量:1
5
作者 walid el-shafai Noha A.El-Hag +5 位作者 Ahmed Sedik Ghada Elbanby Fathi E.Abd El-Samie Naglaa F.Soliman Hussah Nasser AlEisa Mohammed E.Abdel Samea 《Computers, Materials & Continua》 SCIE EI 2023年第2期2905-2925,共21页
Medical image fusion is considered the best method for obtaining one image with rich details for efficient medical diagnosis and therapy.Deep learning provides a high performance for several medical image analysis app... Medical image fusion is considered the best method for obtaining one image with rich details for efficient medical diagnosis and therapy.Deep learning provides a high performance for several medical image analysis applications.This paper proposes a deep learning model for the medical image fusion process.This model depends on Convolutional Neural Network(CNN).The basic idea of the proposed model is to extract features from both CT and MR images.Then,an additional process is executed on the extracted features.After that,the fused feature map is reconstructed to obtain the resulting fused image.Finally,the quality of the resulting fused image is enhanced by various enhancement techniques such as Histogram Matching(HM),Histogram Equalization(HE),fuzzy technique,fuzzy type,and Contrast Limited Histogram Equalization(CLAHE).The performance of the proposed fusion-based CNN model is measured by various metrics of the fusion and enhancement quality.Different realistic datasets of different modalities and diseases are tested and implemented.Also,real datasets are tested in the simulation analysis. 展开更多
关键词 Image fusion CNN deep learning feature extraction evaluation metrics medical diagnosis
在线阅读 下载PDF
COVID-19 Classification from X-Ray Images:An Approach to Implement Federated Learning on Decentralized Dataset 被引量:1
6
作者 Ali Akbar Siddique S.M.Umar Talha +3 位作者 M.Aamir Abeer D.Algarni Naglaa F.Soliman walid el-shafai 《Computers, Materials & Continua》 SCIE EI 2023年第5期3883-3901,共19页
The COVID-19 pandemic has devastated our daily lives,leaving horrific repercussions in its aftermath.Due to its rapid spread,it was quite difficult for medical personnel to diagnose it in such a big quantity.Patients ... The COVID-19 pandemic has devastated our daily lives,leaving horrific repercussions in its aftermath.Due to its rapid spread,it was quite difficult for medical personnel to diagnose it in such a big quantity.Patients who test positive for Covid-19 are diagnosed via a nasal PCR test.In comparison,polymerase chain reaction(PCR)findings take a few hours to a few days.The PCR test is expensive,although the government may bear expenses in certain places.Furthermore,subsets of the population resist invasive testing like swabs.Therefore,chest X-rays or Computerized Vomography(CT)scans are preferred in most cases,and more importantly,they are non-invasive,inexpensive,and provide a faster response time.Recent advances in Artificial Intelligence(AI),in combination with state-of-the-art methods,have allowed for the diagnosis of COVID-19 using chest x-rays.This article proposes a method for classifying COVID-19 as positive or negative on a decentralized dataset that is based on the Federated learning scheme.In order to build a progressive global COVID-19 classification model,two edge devices are employed to train the model on their respective localized dataset,and a 3-layered custom Convolutional Neural Network(CNN)model is used in the process of training the model,which can be deployed from the server.These two edge devices then communicate their learned parameter and weight to the server,where it aggregates and updates the globalmodel.The proposed model is trained using an image dataset that can be found on Kaggle.There are more than 13,000 X-ray images in Kaggle Database collection,from that collection 9000 images of Normal and COVID-19 positive images are used.Each edge node possesses a different number of images;edge node 1 has 3200 images,while edge node 2 has 5800.There is no association between the datasets of the various nodes that are included in the network.By doing it in this manner,each of the nodes will have access to a separate image collection that has no correlation with each other.The diagnosis of COVID-19 has become considerably more efficient with the installation of the suggested algorithm and dataset,and the findings that we have obtained are quite encouraging. 展开更多
关键词 Artificial intelligence deep learning federated learning COVID-19 decentralized image dataset
在线阅读 下载PDF
Cancelable Speaker Identification System Based on Optical-Like Encryption Algorithms 被引量:1
7
作者 Safaa El-Gazar walid el-shafai +4 位作者 Ghada El-Banby Hesham F.A.Hamed Gerges M.Salama Mohammed Abd-Elnaby Fathi E.Abd El-Samie 《Computer Systems Science & Engineering》 SCIE EI 2022年第10期87-102,共16页
Biometric authentication is a rapidly growing trend that is gaining increasing attention in the last decades.It achieves safe access to systems using biometrics instead of the traditional passwords.The utilization of ... Biometric authentication is a rapidly growing trend that is gaining increasing attention in the last decades.It achieves safe access to systems using biometrics instead of the traditional passwords.The utilization of a biometric in its original format makes it usable only once.Therefore,a cancelable biometric template should be used,so that it can be replaced when it is attacked.Cancelable biometrics aims to enhance the security and privacy of biometric authentication.Digital encryption is an efficient technique to be used in order to generate cancelable biometric templates.In this paper,a highly-secure encryption algorithm is proposed to ensure secure biometric data in verification systems.The considered biometric in this paper is the speech signal.The speech signal is transformed into its spectrogram.Then,the spectrogram is encrypted using two cascaded optical encryption algorithms.The first algorithm is the Optical Scanning Holography(OSH)for its efficiency as an encryption tool.The OSH encrypted spectrogram is encrypted using Double Random Phase Encoding(DRPE)by implementing two Random Phase Masks(RPMs).After the two cascaded optical encryption algorithms,the cancelable template is obtained.The verification is implemented through correlation estimation between enrolled and test templates in their encrypted format.If the correlation value is larger than a threshold value,the user is authorized.The threshold value can be determined from the genuine and imposter correlation distribution curves as the midpoint between the two curves.The implementation of optical encryption is adopted using its software rather than the optical setup.The efficiency of the proposed cancelable biometric algorithm is illustrated by the simulation results.It can improve the biometric data security without deteriorating the recognition accuracy.Simulation results give close-to-zero This values for the Equal Error Rate(EER)and close-to-one values for the Area under Receiver Operator Characteristic(AROC)curve. 展开更多
关键词 Cancelable biometrics SPECTROGRAM OSH DRPE EER AROC
在线阅读 下载PDF
Hybrid of Distributed Cumulative Histograms and Classification Model for Attack Detection 被引量:1
8
作者 Mostafa Nassar Anas M.Ali +5 位作者 walid el-shafai Adel Saleeb Fathi E.Abd El-Samie Naglaa F.Soliman Hussah Nasser AlEisa Hossam Eldin H.Ahmed 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期2235-2247,共13页
Traditional security systems are exposed to many various attacks,which represents a major challenge for the spread of the Internet in the future.Innovative techniques have been suggested for detecting attacks using ma... Traditional security systems are exposed to many various attacks,which represents a major challenge for the spread of the Internet in the future.Innovative techniques have been suggested for detecting attacks using machine learning and deep learning.The significant advantage of deep learning is that it is highly efficient,but it needs a large training time with a lot of data.Therefore,in this paper,we present a new feature reduction strategy based on Distributed Cumulative Histograms(DCH)to distinguish between dataset features to locate the most effective features.Cumulative histograms assess the dataset instance patterns of the applied features to identify the most effective attributes that can significantly impact the classification results.Three different models for detecting attacks using Convolutional Neural Network(CNN)and Long Short-Term Memory Network(LSTM)are also proposed.The accuracy test of attack detection using the hybrid model was 98.96%on the UNSW-NP15 dataset.The proposed model is compared with wrapper-based and filter-based Feature Selection(FS)models.The proposed model reduced classification time and increased detection accuracy. 展开更多
关键词 Feature selection DCH LSTM CNN security systems
在线阅读 下载PDF
Digital Twin-Based Automated Fault Diagnosis in Industrial IoT Applications
9
作者 Samah Alshathri Ezz El-Din Hemdan +1 位作者 walid el-shafai Amged Sayed 《Computers, Materials & Continua》 SCIE EI 2023年第4期183-196,共14页
In recent years, Digital Twin (DT) has gained significant interestfrom academia and industry due to the advanced in information technology,communication systems, Artificial Intelligence (AI), Cloud Computing (CC),and ... In recent years, Digital Twin (DT) has gained significant interestfrom academia and industry due to the advanced in information technology,communication systems, Artificial Intelligence (AI), Cloud Computing (CC),and Industrial Internet of Things (IIoT). The main concept of the DT isto provide a comprehensive tangible, and operational explanation of anyelement, asset, or system. However, it is an extremely dynamic taxonomydeveloping in complexity during the life cycle that produces a massive amountof engendered data and information. Likewise, with the development of AI,digital twins can be redefined and could be a crucial approach to aid theInternet of Things (IoT)-based DT applications for transferring the data andvalue onto the Internet with better decision-making. Therefore, this paperintroduces an efficient DT-based fault diagnosis model based on machinelearning (ML) tools. In this framework, the DT model of the machine isconstructed by creating the simulation model. In the proposed framework,the Genetic algorithm (GA) is used for the optimization task to improvethe classification accuracy. Furthermore, we evaluate the proposed faultdiagnosis framework using performance metrics such as precision, accuracy,F-measure, and recall. The proposed framework is comprehensively examinedusing the triplex pump fault diagnosis. The experimental results demonstratedthat the hybrid GA-ML method gives outstanding results compared to MLmethods like LogisticRegression (LR), Na飗e Bayes (NB), and SupportVectorMachine (SVM). The suggested framework achieves the highest accuracyof 95% for the employed hybrid GA-SVM. The proposed framework willeffectively help industrial operators make an appropriate decision concerningthe fault analysis for IIoT applications in the context of Industry 4.0. 展开更多
关键词 Automated fault diagnosis control system ML AI CC IIoT digital twins genetic algorithm GA-ML technique
在线阅读 下载PDF
Proposed Biometric Security System Based on Deep Learning and Chaos Algorithms
10
作者 Iman Almomani walid el-shafai +3 位作者 Aala AlKhayer Albandari Alsumayt Sumayh S.Aljameel Khalid Alissa 《Computers, Materials & Continua》 SCIE EI 2023年第2期3515-3537,共23页
Nowadays,there is tremendous growth in biometric authentication and cybersecurity applications.Thus,the efficient way of storing and securing personal biometric patterns is mandatory in most governmental and private s... Nowadays,there is tremendous growth in biometric authentication and cybersecurity applications.Thus,the efficient way of storing and securing personal biometric patterns is mandatory in most governmental and private sectors.Therefore,designing and implementing robust security algorithms for users’biometrics is still a hot research area to be investigated.This work presents a powerful biometric security system(BSS)to protect different biometric modalities such as faces,iris,and fingerprints.The proposed BSSmodel is based on hybridizing auto-encoder(AE)network and a chaos-based ciphering algorithm to cipher the details of the stored biometric patterns and ensures their secrecy.The employed AE network is unsupervised deep learning(DL)structure used in the proposed BSS model to extract main biometric features.These obtained features are utilized to generate two random chaos matrices.The first random chaos matrix is used to permute the pixels of biometric images.In contrast,the second random matrix is used to further cipher and confuse the resulting permuted biometric pixels using a two-dimensional(2D)chaotic logisticmap(CLM)algorithm.To assess the efficiency of the proposed BSS,(1)different standardized color and grayscale images of the examined fingerprint,faces,and iris biometrics were used(2)comprehensive security and recognition evaluation metrics were measured.The assessment results have proven the authentication and robustness superiority of the proposed BSSmodel compared to other existing BSSmodels.For example,the proposed BSS succeeds in getting a high area under the receiver operating characteristic(AROC)value that reached 99.97%and low rates of 0.00137,0.00148,and 3516 CMC,2023,vol.74,no.20.00157 for equal error rate(EER),false reject rate(FRR),and a false accept rate(FAR),respectively. 展开更多
关键词 Biometric security deep learning AE network 2D CLM cybersecurity and authentication applications feature extraction unsupervised learning
在线阅读 下载PDF
Automatic PV Grid Fault Detection System with IoT and LabVIEW as Data Logger
11
作者 Rohit Samkria Mohammed Abd-Elnaby +4 位作者 Rajesh Singh Anita Gehlot Mamoon Rashid Moustafa H.Aly walid el-shafai 《Computers, Materials & Continua》 SCIE EI 2021年第11期1709-1723,共15页
Fault detection of the photovoltaic(PV)grid is necessary to detect serious output power reduction to avoid PV modules’damage.To identify the fault of the PV arrays,there is a necessity to implement an automatic syste... Fault detection of the photovoltaic(PV)grid is necessary to detect serious output power reduction to avoid PV modules’damage.To identify the fault of the PV arrays,there is a necessity to implement an automatic system.In this IoT and LabVIEW-based automatic fault detection of 3×3 solar array,a PV system is proposed to control and monitor Internet connectivity remotely.Hardware component to automatically reconfigure the solar PV array from the series-parallel(SP)to the complete cross-linked array underneath partial shading conditions(PSC)is centered on the Atmega328 system to achieve maximum power.In the LabVIEW environment,an automated monitoring system is developed.The automatic monitoring system assesses the voltage drop losses present in the DC side of the PV generator and generates a decimal weighted value depending on the defective solar panels and transmits this value to the remote station through an RF modem,and provides an indicator of the faulty solar panel over the built-in Interface LabVIEW.The managing of this GUI indicator helps the monitoring system to generate a panel alert for damaged panels in the PV system.Node MCU in the receiver section enables transmission of the fault status of PV arrays via Internet connectivity.The IoT-based Blynk app is employed for visualizing the fault status of the 3×3 PV array.The dashboard of Blynk visualizes every array with the status. 展开更多
关键词 Blynk app IOT LABVIEW node MCU PV array RF modem WSN
在线阅读 下载PDF
Shadow Extraction and Elimination of Moving Vehicles for Tracking Vehicles
12
作者 Kalpesh Jadav Vishal Sorathiya +5 位作者 walid el-shafai Torki Altameem Moustafa HAly Vipul Vekariya Kawsar Ahmed Francis MBui 《Computers, Materials & Continua》 SCIE EI 2023年第11期2009-2030,共22页
Shadow extraction and elimination is essential for intelligent transportation systems(ITS)in vehicle tracking application.The shadow is the source of error for vehicle detection,which causes misclassification of vehic... Shadow extraction and elimination is essential for intelligent transportation systems(ITS)in vehicle tracking application.The shadow is the source of error for vehicle detection,which causes misclassification of vehicles and a high false alarm rate in the research of vehicle counting,vehicle detection,vehicle tracking,and classification.Most of the existing research is on shadow extraction of moving vehicles in high intensity and on standard datasets,but the process of extracting shadows from moving vehicles in low light of real scenes is difficult.The real scenes of vehicles dataset are generated by self on the Vadodara–Mumbai highway during periods of poor illumination for shadow extraction of moving vehicles to address the above problem.This paper offers a robust shadow extraction of moving vehicles and its elimination for vehicle tracking.The method is distributed into two phases:In the first phase,we extract foreground regions using a mixture of Gaussian model,and then in the second phase,with the help of the Gamma correction,intensity ratio,negative transformation,and a combination of Gaussian filters,we locate and remove the shadow region from the foreground areas.Compared to the outcomes proposed method with outcomes of an existing method,the suggested method achieves an average true negative rate of above 90%,a shadow detection rate SDR(η%),and a shadow discrimination rate SDR(ξ%)of 80%.Hence,the suggested method is more appropriate for moving shadow detection in real scenes. 展开更多
关键词 Change illuminations ImageJ software intelligent traffic systems mixture of Gaussian model National Institute of Health vehicle tracking
在线阅读 下载PDF
Deep CNN Model for Multimodal Medical Image Denoising
13
作者 walid el-shafai Amira A.Mahmoud +7 位作者 Anas M.Ali El-Sayed M.El-Rabaie Taha E.Taha Osama F.Zahran Adel S.El-Fishawy Naglaa F.Soliman Amel A.Alhussan Fathi E.Abd El-Samie 《Computers, Materials & Continua》 SCIE EI 2022年第11期3795-3814,共20页
In the literature,numerous techniques have been employed to decrease noise in medical image modalities,including X-Ray(XR),Ultrasonic(Us),Computed Tomography(CT),Magnetic Resonance Imaging(MRI),and Positron Emission T... In the literature,numerous techniques have been employed to decrease noise in medical image modalities,including X-Ray(XR),Ultrasonic(Us),Computed Tomography(CT),Magnetic Resonance Imaging(MRI),and Positron Emission Tomography(PET).These techniques are organized into two main classes:the Multiple Image(MI)and the Single Image(SI)techniques.In the MI techniques,images usually obtained for the same area scanned from different points of view are used.A single image is used in the entire procedure in the SI techniques.SI denoising techniques can be carried out both in a transform or spatial domain.This paper is concerned with single-image noise reduction techniques because we deal with single medical images.The most well-known spatial domain noise reduction techniques,including Gaussian filter,Kuan filter,Frost filter,Lee filter,Gabor filter,Median filter,Homomorphic filter,Speckle reducing anisotropic diffusion(SRAD),Nonlocal-Means(NL-Means),and Total Variation(TV),are studied.Also,the transform domain noise reduction techniques,including wavelet-based and Curvelet-based techniques,and some hybridization techniques are investigated.Finally,a deep(Convolutional Neural Network)CNN-based denoising model is proposed to eliminate Gaussian and Speckle noises in different medical image modalities.This model utilizes the Batch Normalization(BN)and the ReLU as a basic structure.As a result,it attained a considerable improvement over the traditional techniques.The previously mentioned techniques are evaluated and compared by calculating qualitative visual inspection and quantitative parameters like Peak Signal-to-Noise Ratio(PSNR),Correlation Coefficient(Cr),and system complexity to determine the optimum denoising algorithm to be applied universally.Based on the quality metrics,it is demonstrated that the proposed deep CNN-based denoising model is efficient and has superior denoising performance over the traditionaldenoising techniques. 展开更多
关键词 Image enhancement medical imaging speckle noise Gaussian noise denoising filters CNN denoising
在线阅读 下载PDF
An Efficient GCD-Based Cancelable Biometric Algorithm for Single and Multiple Biometrics
14
作者 Naglaa F.Soliman Abeer D.Algarni +2 位作者 walid el-shafai Fathi E.Abd El-Samie Ghada M.El Banby 《Computers, Materials & Continua》 SCIE EI 2021年第11期1571-1595,共25页
Cancelable biometrics are required in most remote access applications that need an authentication stage such as the cloud and Internet of Things(IoT)networks.The objective of using cancelable biometrics is to save the... Cancelable biometrics are required in most remote access applications that need an authentication stage such as the cloud and Internet of Things(IoT)networks.The objective of using cancelable biometrics is to save the original ones from hacking attempts.A generalized algorithm to generate cancelable templates that is applicable on both single and multiple biometrics is proposed in this paper to be considered for cloud and IoT applications.The original biometric is blurred with two co-prime operators.Hence,it can be recovered as the Greatest Common Divisor(GCD)between its two blurred versions.Minimal changes if induced in the biometric image prior to processing with co-prime operators prevents the recovery of the original biometric image through a GCD operation.Hence,the ability to change cancelable templates is guaranteed,since the owner of the biometric can pre-determine and manage the minimal change induced in the biometric image.Furthermore,we test the utility of the proposed algorithm in the single-and multi-biometric scenarios.The multi-biometric scenario depends on compressing face,fingerprint,iris,and palm print images,simultaneously,to generate the cancelable templates.Evaluation metrics such as Equal Error Rate(EER)and Area and Receiver Operator Characteristic curve(AROC)are considered.Simulation results on single-and multi-biometric scenarios show high AROC values up to 99.59%,and low EER values down to 0.04%. 展开更多
关键词 CLOUD IOT cancelable biometrics GCD single-and multi-biometrics security applications
在线阅读 下载PDF
Chimp Optimization Algorithm Based Feature Selection with Machine Learning for Medical Data Classification
15
作者 Firas Abedi Hayder M.A.Ghanimi +6 位作者 Abeer D.Algarni Naglaa F.Soliman walid el-shafai Ali Hashim Abbas Zahraa H.Kareem Hussein Muhi Hariz Ahmed Alkhayyat 《Computer Systems Science & Engineering》 SCIE EI 2023年第12期2791-2814,共24页
Datamining plays a crucial role in extractingmeaningful knowledge fromlarge-scale data repositories,such as data warehouses and databases.Association rule mining,a fundamental process in data mining,involves discoveri... Datamining plays a crucial role in extractingmeaningful knowledge fromlarge-scale data repositories,such as data warehouses and databases.Association rule mining,a fundamental process in data mining,involves discovering correlations,patterns,and causal structures within datasets.In the healthcare domain,association rules offer valuable opportunities for building knowledge bases,enabling intelligent diagnoses,and extracting invaluable information rapidly.This paper presents a novel approach called the Machine Learning based Association Rule Mining and Classification for Healthcare Data Management System(MLARMC-HDMS).The MLARMC-HDMS technique integrates classification and association rule mining(ARM)processes.Initially,the chimp optimization algorithm-based feature selection(COAFS)technique is employed within MLARMC-HDMS to select relevant attributes.Inspired by the foraging behavior of chimpanzees,the COA algorithm mimics their search strategy for food.Subsequently,the classification process utilizes stochastic gradient descent with a multilayer perceptron(SGD-MLP)model,while the Apriori algorithm determines attribute relationships.We propose a COA-based feature selection approach for medical data classification using machine learning techniques.This approach involves selecting pertinent features from medical datasets through COA and training machine learning models using the reduced feature set.We evaluate the performance of our approach on various medical datasets employing diverse machine learning classifiers.Experimental results demonstrate that our proposed approach surpasses alternative feature selection methods,achieving higher accuracy and precision rates in medical data classification tasks.The study showcases the effectiveness and efficiency of the COA-based feature selection approach in identifying relevant features,thereby enhancing the diagnosis and treatment of various diseases.To provide further validation,we conduct detailed experiments on a benchmark medical dataset,revealing the superiority of the MLARMCHDMS model over other methods,with a maximum accuracy of 99.75%.Therefore,this research contributes to the advancement of feature selection techniques in medical data classification and highlights the potential for improving healthcare outcomes through accurate and efficient data analysis.The presented MLARMC-HDMS framework and COA-based feature selection approach offer valuable insights for researchers and practitioners working in the field of healthcare data mining and machine learning. 展开更多
关键词 Association rule mining data classification healthcare data machine learning parameter tuning data mining feature selection MLARMC-HDMS COA stochastic gradient descent Apriori algorithm
在线阅读 下载PDF
A Hybrid Security Framework for Medical Image Communication
16
作者 walid el-shafai Hayam A.Abd El-Hameed +3 位作者 Ashraf A.M.Khalaf Naglaa F.Soliman Amel A.Alhussan Fathi E.Abd El-Samie 《Computers, Materials & Continua》 SCIE EI 2022年第11期2713-2730,共18页
Authentication of the digital image has much attention for the digital revolution.Digital image authentication can be verified with image watermarking and image encryption schemes.These schemes are widely used to prot... Authentication of the digital image has much attention for the digital revolution.Digital image authentication can be verified with image watermarking and image encryption schemes.These schemes are widely used to protect images against forgery attacks,and they are useful for protecting copyright and rightful ownership.Depending on the desirable applications,several image encryption and watermarking schemes have been proposed to moderate this attention.This framework presents a new scheme that combines a Walsh Hadamard Transform(WHT)-based image watermarking scheme with an image encryption scheme based on Double Random Phase Encoding(DRPE).First,on the sender side,the secret medical image is encrypted using DRPE.Then the encrypted image is watermarking based on WHT.The combination between watermarking and encryption increases the security and robustness of transmitting an image.The performance evaluation of the proposed scheme is obtained by testing Structural Similarity Index(SSIM),Peak Signal-to-Noise Ratio(PSNR),Normalized cross-correlation(NC),and Feature Similarity Index(FSIM). 展开更多
关键词 Walsh hadamard transform WATERMARKING ENCRYPTION double random phase encoding structural similarity index
在线阅读 下载PDF
Computational Intelligence Driven Secure Unmanned Aerial Vehicle Image Classification in Smart City Environment
17
作者 Firas Abedi Hayder M.A.Ghanimi +6 位作者 Abeer D.Algarni Naglaa F.Soliman walid el-shafai Ali Hashim Abbas Zahraa H.Kareem Hussein Muhi Hariz Ahmed Alkhayyat 《Computer Systems Science & Engineering》 SCIE EI 2023年第12期3127-3144,共18页
Computational intelligence(CI)is a group of nature-simulated computationalmodels and processes for addressing difficult real-life problems.The CI is useful in the UAV domain as it produces efficient,precise,and rapid ... Computational intelligence(CI)is a group of nature-simulated computationalmodels and processes for addressing difficult real-life problems.The CI is useful in the UAV domain as it produces efficient,precise,and rapid solutions.Besides,unmanned aerial vehicles(UAV)developed a hot research topic in the smart city environment.Despite the benefits of UAVs,security remains a major challenging issue.In addition,deep learning(DL)enabled image classification is useful for several applications such as land cover classification,smart buildings,etc.This paper proposes novel meta-heuristics with a deep learning-driven secure UAV image classification(MDLS-UAVIC)model in a smart city environment.Themajor purpose of the MDLS-UAVIC algorithm is to securely encrypt the images and classify them into distinct class labels.The proposedMDLS-UAVIC model follows a two-stage process:encryption and image classification.The encryption technique for image encryption effectively encrypts the UAV images.Next,the image classification process involves anXception-based deep convolutional neural network for the feature extraction process.Finally,shuffled shepherd optimization(SSO)with a recurrent neural network(RNN)model is applied for UAV image classification,showing the novelty of the work.The experimental validation of the MDLS-UAVIC approach is tested utilizing a benchmark dataset,and the outcomes are examined in various measures.It achieved a high accuracy of 98%. 展开更多
关键词 Computational intelligence unmanned aerial vehicles deep learning metaheuristics smart city image encryption image classification
在线阅读 下载PDF
Statistical Time Series Forecasting Models for Pandemic Prediction
18
作者 Ahmed ElShafee walid el-shafai +2 位作者 Abeer D.Algarni Naglaa F.Soliman Moustafa H.Aly 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期349-374,共26页
COVID-19 has significantly impacted the growth prediction of a pandemic,and it is critical in determining how to battle and track the disease progression.In this case,COVID-19 data is a time-series dataset that can be... COVID-19 has significantly impacted the growth prediction of a pandemic,and it is critical in determining how to battle and track the disease progression.In this case,COVID-19 data is a time-series dataset that can be projected using different methodologies.Thus,this work aims to gauge the spread of the outbreak severity over time.Furthermore,data analytics and Machine Learning(ML)techniques are employed to gain a broader understanding of virus infections.We have simulated,adjusted,and fitted several statistical time-series forecasting models,linearML models,and nonlinear ML models.Examples of these models are Logistic Regression,Lasso,Ridge,ElasticNet,Huber Regressor,Lasso Lars,Passive Aggressive Regressor,K-Neighbors Regressor,Decision Tree Regressor,Extra Trees Regressor,Support Vector Regressions(SVR),AdaBoost Regressor,Random Forest Regressor,Bagging Regressor,AuoRegression,MovingAverage,Gradient Boosting Regressor,Autoregressive Moving Average(ARMA),Auto-Regressive Integrated Moving Averages(ARIMA),SimpleExpSmoothing,Exponential Smoothing,Holt-Winters,Simple Moving Average,Weighted Moving Average,Croston,and naive Bayes.Furthermore,our suggested methodology includes the development and evaluation of ensemble models built on top of the best-performing statistical and ML-based prediction methods.A third stage in the proposed system is to examine three different implementations to determine which model delivers the best performance.Then,this best method is used for future forecasts,and consequently,we can collect the most accurate and dependable predictions. 展开更多
关键词 Forecasting COVID-19 predictive models medical viruses mathematical model market research DISEASES
在线阅读 下载PDF
Analysis of BrainMRI: AI-Assisted Healthcare Framework for the Smart Cities
19
作者 walid el-shafai Randa Ali +3 位作者 Ahmed Sedik Taha El-Sayed Taha Mohammed Abd-Elnaby Fathi E.Abd El-Samie 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期1843-1856,共14页
The use of intelligent machines to work and react like humans is vital in emerging smart cities.Computer-aided analysis of complex and huge MRI(Mag-netic Resonance Imaging)scans is very important in healthcare applica... The use of intelligent machines to work and react like humans is vital in emerging smart cities.Computer-aided analysis of complex and huge MRI(Mag-netic Resonance Imaging)scans is very important in healthcare applications.Among AI(Artificial Intelligence)driven healthcare applications,tumor detection is one of the contemporary researchfields that have become attractive to research-ers.There are several modalities of imaging performed on the brain for the pur-pose of tumor detection.This paper offers a deep learning approach for detecting brain tumors from MR(Magnetic Resonance)images based on changes in the division of the training and testing data and the structure of the CNN(Convolu-tional Neural Network)layers.The proposed approach is carried out on a brain tumor dataset from the National Centre of Image-Guided Therapy,including about 4700 MRI images of ten brain tumor cases with both normal and abnormal states.The dataset is divided into test,and train subsets with a ratio of the training set to the validation set of 70:30.The main contribution of this paper is introdu-cing an optimum deep learning structure of CNN layers.The simulation results are obtained for 50 epochs in the training phase.The simulation results reveal that the optimum CNN architecture consists of four layers. 展开更多
关键词 Healthcare smart cities clinical automation CNN machine learning brain tumor medical diagnosis
在线阅读 下载PDF
Dynamic S-Box Generation Using Novel Chaotic Map with Nonlinearity Tweaking
20
作者 Amjad Hussain Zahid Muhammad Junaid Arshad +2 位作者 Musheer Ahmad Naglaa F.Soliman walid el-shafai 《Computers, Materials & Continua》 SCIE EI 2023年第5期3011-3026,共16页
A substitution box(S-Box)is a crucial component of contemporary cryptosystems that provide data protection in block ciphers.At the moment,chaotic maps are being created and extensively used to generate these SBoxes as... A substitution box(S-Box)is a crucial component of contemporary cryptosystems that provide data protection in block ciphers.At the moment,chaotic maps are being created and extensively used to generate these SBoxes as a chaotic map assists in providing disorder and resistance to combat cryptanalytical attempts.In this paper,the construction of a dynamic S-Box using a cipher key is proposed using a novel chaotic map and an innovative tweaking approach.The projected chaotic map and the proposed tweak approach are presented for the first time and the use of parameters in their workingmakes both of these dynamic in nature.The tweak approach employs cubic polynomials while permuting the values of an initial S-Box to enhance its cryptographic fort.Values of the parameters are provided using the cipher key and a small variation in values of these parameters results in a completely different unique S-Box.Comparative analysis and exploration confirmed that the projected chaoticmap exhibits a significant amount of chaotic complexity.The security assessment in terms of bijectivity,nonlinearity,bits independence,strict avalanche,linear approximation probability,and differential probability criteria are utilized to critically investigate the effectiveness of the proposed S-Box against several assaults.The proposed S-Box’s cryptographic performance is comparable to those of recently projected S-Boxes for its adaption in real-world security applications.The comparative scrutiny pacifies the genuine potential of the proposed S-Box in terms of its applicability for data security. 展开更多
关键词 Substitution-box chaotic map data security tweaking
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部