期刊文献+
共找到562,126篇文章
< 1 2 250 >
每页显示 20 50 100
时序知识图谱构建研究综述 被引量:1
1
作者 陆佳民 张晶 +1 位作者 冯钧 安琪 《计算机科学与探索》 北大核心 2025年第2期295-315,共21页
知识图谱作为连接数据、知识和智能的桥梁,已被广泛应用于辅助搜索、智能推荐、问答系统、自然语言处理等多个领域。然而,随着应用场景的不断拓展,传统静态知识图谱逐渐暴露出在处理动态知识方面的局限性。时序知识图谱的出现弥补了这... 知识图谱作为连接数据、知识和智能的桥梁,已被广泛应用于辅助搜索、智能推荐、问答系统、自然语言处理等多个领域。然而,随着应用场景的不断拓展,传统静态知识图谱逐渐暴露出在处理动态知识方面的局限性。时序知识图谱的出现弥补了这一缺陷,它将时间信息融入图谱结构,能够更准确地表示知识的动态变化。对时序知识图谱的构建进行了全面的研究,介绍了时序知识图谱的概念,明确了其在处理动态知识时的价值。解析了时序知识图谱构建流程,将其核心过程划分为知识抽取、知识融合和知识计算三大环节。对每个阶段进行了梳理,明确了任务定义,总结了研究现状,并探讨了大语言模型在这些任务中的应用。在知识抽取阶段,重点关注命名实体识别、关系抽取和时间信息抽取;在知识融合阶段,探讨了实体对齐和实体链接;在知识计算阶段,聚焦于知识推理。深入分析了每个阶段面临的挑战,并针对特有挑战展望了未来的研究方向。 展开更多
关键词 时序知识图谱 知识抽取 时间信息抽取 知识融合 知识推理
在线阅读 下载PDF
融合知识图谱和大模型的高校科研管理问答系统设计 被引量:1
2
作者 王永 秦嘉俊 +1 位作者 黄有锐 邓江洲 《计算机科学与探索》 北大核心 2025年第1期107-117,共11页
科研管理是高校管理中的重要组成部分,但现有的科研管理系统难以满足用户的个性化需求。以高校科研管理向智能化转型为需求导向,将知识图谱、传统模型和大语言模型相结合,共同构建新一代高校科研管理问答系统。采集科研知识用于构建科... 科研管理是高校管理中的重要组成部分,但现有的科研管理系统难以满足用户的个性化需求。以高校科研管理向智能化转型为需求导向,将知识图谱、传统模型和大语言模型相结合,共同构建新一代高校科研管理问答系统。采集科研知识用于构建科研知识图谱。利用同时进行意图分类和实体提取的多任务模型进行语义解析。借助解析结果来生成查询语句,并从知识图谱中检索信息来回复常规问题。将大语言模型与知识图谱相结合,以辅助处理开放性问题。在意图和实体具有关联的数据集上的实验结果表明,采用的多任务模型在意图分类和实体识别任务上的F1值分别为0.958和0.937,优于其他对比模型和单任务模型。Cypher生成测试表明了自定义Prompt在激发大语言模型涌现能力方面的成效,利用大语言模型实现文本生成Cypher的准确率达到85.8%,有效处理了基于知识图谱的开放性问题。采用知识图谱、传统模型和大语言模型搭建的问答系统的准确性为0.935,很好地满足了智能问答的需求。 展开更多
关键词 知识图谱 多任务模型 意图分类 命名实体识别 大语言模型
在线阅读 下载PDF
基于Transformer模型的时序数据预测方法综述 被引量:1
3
作者 孟祥福 石皓源 《计算机科学与探索》 北大核心 2025年第1期45-64,共20页
时序数据预测(TSF)是指通过分析历史数据的趋势性、季节性等潜在信息,预测未来时间点或时间段的数值和趋势。时序数据由传感器生成,在金融、医疗、能源、交通、气象等众多领域都发挥着重要作用。随着物联网传感器的发展,海量的时序数据... 时序数据预测(TSF)是指通过分析历史数据的趋势性、季节性等潜在信息,预测未来时间点或时间段的数值和趋势。时序数据由传感器生成,在金融、医疗、能源、交通、气象等众多领域都发挥着重要作用。随着物联网传感器的发展,海量的时序数据难以使用传统的机器学习解决,而Transformer在自然语言处理和计算机视觉等领域的诸多任务表现优秀,学者们利用Transformer模型有效捕获长期依赖关系,使得时序数据预测任务取得了飞速发展。综述了基于Transformer模型的时序数据预测方法,按时间梳理了时序数据预测的发展进程,系统介绍了时序数据预处理过程和方法,介绍了常用的时序预测评价指标和数据集。以算法框架为研究内容系统阐述了基于Transformer的各类模型在TSF任务中的应用方法和工作原理。通过实验对比了各个模型的性能、优点和局限性,并对实验结果展开了分析与讨论。结合Transformer模型在时序数据预测任务中现有工作存在的挑战提出了该方向未来发展趋势。 展开更多
关键词 深度学习 时序数据预测 数据预处理 Transformer模型
在线阅读 下载PDF
自监督的两阶段广义小样本目标检测算法 被引量:1
4
作者 段立娟 张子晨 张广勇 《信号处理》 北大核心 2025年第2期370-381,共12页
深度学习技术在目标检测领域取得了巨大进展,但其优异的性能建立在大量精确标注的数据集之上。在样本稀缺的特定领域,如国防海上安全和医学等领域,获取具有标注的数据尤为困难。因此,小样本目标检测领域因其能够应对样本稀疏性所带来的... 深度学习技术在目标检测领域取得了巨大进展,但其优异的性能建立在大量精确标注的数据集之上。在样本稀缺的特定领域,如国防海上安全和医学等领域,获取具有标注的数据尤为困难。因此,小样本目标检测领域因其能够应对样本稀疏性所带来的挑战而得到学术界的广泛研究。该领域的研究目标是得到能够从极其有限的样本中提取知识并实现高效目标检测的算法框架。然而,由于新类样本的稀缺性,其与基类之间存在着显著的分布差异,导致了小样本目标检测任务的准确度受限。此外,在对模型应用新类进行微调的过程中,由于新类与基类的不重叠性,模型学习新类的特征知识的过程中会存在大量的梯度更新,导致基类的特征知识被遗忘的问题,从而降低模型的整体性能。针对新类别样本稀缺的问题,本研究采用自监督学习策略。自监督学习,无须依赖标注信息,便于构建代理任务以进行模型训练,是缓解小样本目标检测样本稀缺问题的有效方案。为了避免模型在学习新类特征知识后出现基类灾难性遗忘的问题,本文将自监督学习与两阶段的目标检测器相结合。通过在类别域应用潜在特征来表示各个类别的特征信息,通过动态更新策略在学习新类别的过程中进一步优化特征,并借助检测框域构建良好的代理任务提升回归框的精准度。本研究在PASCAL VOC数据集和MS COCO数据集上进行大量的实验验证,实验结果表明,无论是在新类性能方面还是总体性能方面,本研究所提出的方法相较于其他多个小样本目标检测模型均展现出更加优越的性能表现。 展开更多
关键词 深度学习 自监督学习 小样本目标检测 广义小样本目标检测
在线阅读 下载PDF
结合通道剪枝和通道注意力的轻量型车辆点云补全网络
5
作者 杨晓文 冯泊栋 +3 位作者 韩慧妍 况立群 韩燮 何黎刚 《计算机工程与应用》 北大核心 2025年第1期232-242,共11页
针对现有的点云补全网络多关注于补全的精度而忽视补全效率问题,提出了一种轻量型点云补全网络来准确、高效地修复自动驾驶中的不完整车辆点云。为了提高网络推理效率,采用一种高效的一次性通道剪枝技术提高网络的补全效率;在特征提取阶... 针对现有的点云补全网络多关注于补全的精度而忽视补全效率问题,提出了一种轻量型点云补全网络来准确、高效地修复自动驾驶中的不完整车辆点云。为了提高网络推理效率,采用一种高效的一次性通道剪枝技术提高网络的补全效率;在特征提取阶段,网络加入通道注意力模块,将加权特征与全局特征拼接,通过两层多维特征信息提取,得到最终的特征向量;将特征向量传入双解码器结构中,分别通过全连接层和多层感知机生成稠密的粗糙点云和输入点云偏差值;将粗糙点云与输入点云偏差值相加得到最终的精细化完整点云。在PCN数据集和KITTI数据集上进行实验,实验结果表明在补全缺失车辆信息的实时性上有着显著的提升,并且在补全精度上也有不错的表现。 展开更多
关键词 点云补全 通道剪枝 通道注意力 轻量型 深度学习
在线阅读 下载PDF
计算机视觉领域对抗样本检测综述
6
作者 张鑫 张晗 +1 位作者 牛曼宇 姬莉霞 《计算机科学》 北大核心 2025年第1期345-361,共17页
随着数据量的增加和硬件性能的提升,深度学习在计算机视觉领域取得了显著进展.然而,深度学习模型容易受到对抗样本的攻击,导致输出发生显著变化.对抗样本检测作为一种有效的防御手段,可以在不改变模型结构的前提下防止对抗样本对深度学... 随着数据量的增加和硬件性能的提升,深度学习在计算机视觉领域取得了显著进展.然而,深度学习模型容易受到对抗样本的攻击,导致输出发生显著变化.对抗样本检测作为一种有效的防御手段,可以在不改变模型结构的前提下防止对抗样本对深度学习模型造成影响.首先,对近年来的对抗样本检测研究工作进行了整理,分析了对抗样本检测与训练数据的关系,根据检测方法所使用特征进行分类,系统全面地介绍了计算机视觉领域的对抗样本检测方法;然后,对一些结合跨领域技术的检测方法进行了详细介绍,统计了训练和评估检测方法的实验配置;最后,汇总了一些有望应用于对抗样本检测的技术,并对未来的研究挑战进行展望. 展开更多
关键词 深度学习 对抗样本攻击 对抗样本检测 人工智能安全 图像分类
在线阅读 下载PDF
课程知识图谱自动构建综述 被引量:1
7
作者 冯筠 刘星雨 +1 位作者 栗凯旋 孙霞 《计算机技术与发展》 2025年第1期1-11,共11页
知识图谱技术正在不断成熟,在金融、医疗、教育等领域发挥着重要作用。在教育领域,课程知识图谱正逐渐成为教育数字化转型过程中的重要工具。虽然在国内外多年的研究下,实体抽取、关系抽取等通用知识图谱构建技术已经展现出良好的效果,... 知识图谱技术正在不断成熟,在金融、医疗、教育等领域发挥着重要作用。在教育领域,课程知识图谱正逐渐成为教育数字化转型过程中的重要工具。虽然在国内外多年的研究下,实体抽取、关系抽取等通用知识图谱构建技术已经展现出良好的效果,但受到教学场景及教学资源特征的影响,构建课程知识图谱的方法与构建通用图谱的方法相比存在不同之处,且目前缺少对课程知识图谱构建的综述研究。基于这种现状,该文从知识图谱的发展背景出发,回顾当前课程知识图谱的研究成果,并以课程图谱的具体应用场景为依据,重点探究课程知识图谱构建的任务定义、技术现状,总结图谱实际构建过程中的技术选择思路,并对一些方法的不足之处提出改进,有望构建出可满足多种教学任务的知识图谱,促进知识图谱与教育领域的融合。 展开更多
关键词 知识图谱 课程知识图谱 实体抽取 关系抽取 知识图谱构建
在线阅读 下载PDF
序列标签推荐
8
作者 刘冰 徐鹏宇 +4 位作者 陆思进 王诗菁 孙宏健 景丽萍 于剑 《计算机科学》 北大核心 2025年第1期142-150,共9页
随着互联网技术的发展以及社交网络的扩大,网络平台已经成为人们获取信息的一个重要途径。标签的引入提升了信息分类及检索效率。同时,标签推荐系统的出现不仅方便了用户输入标签,还提高了标签的质量。传统的标签推荐算法通常只考虑标... 随着互联网技术的发展以及社交网络的扩大,网络平台已经成为人们获取信息的一个重要途径。标签的引入提升了信息分类及检索效率。同时,标签推荐系统的出现不仅方便了用户输入标签,还提高了标签的质量。传统的标签推荐算法通常只考虑标签和项目两个主体,而忽略了用户在选择标签时个人意图所起到的重要作用。由于在标签推荐系统中标签最终由用户确定,因此用户的偏好在标签推荐中起着关键作用。为此,引入用户作为主体,并结合用户发布的历史帖子的先后顺序,将标签推荐任务建模为更加符合真实场景的序列标签推荐任务。提出了一种基于MLP的序列标签推荐方法(MLP for Sequential Tag Recommendation, MLP4STR),该方法显式地建模用户偏好用于引导整体标签推荐。MLP4STR采用一种跨特征对齐的MLP序列特征提取框架,将文本和标签的特征对齐,获取用户的历史帖子信息和历史标签信息中隐含的用户动态兴趣。最后,结合帖子内容和用户偏好进行标签推荐。在4个真实世界的数据集上得到的实验结果表明,MLP4STR能够有效地学习序列标签推荐中的用户历史行为序列的信息,其中,评价指标F1@5较最优的对比算法有显著提升。 展开更多
关键词 标签推荐 序列推荐 多标签学习 用户偏好
在线阅读 下载PDF
FGITA:一种基于细粒度对齐的多模态命名实体识别框架
9
作者 吕学强 王涛 +3 位作者 游新冬 赵海兴 才藏太 陈玉忠 《小型微型计算机系统》 北大核心 2025年第4期769-775,共7页
命名实体识别任务旨在识别出非结构化文本中所包含的实体并将其分配给预定义的实体类别中.随着互联网和社交媒体的发展,文本信息往往伴随着图像等视觉模态信息出现,传统的命名实体识别方法在多模态信息中表现不佳.近年来,多模态命名实... 命名实体识别任务旨在识别出非结构化文本中所包含的实体并将其分配给预定义的实体类别中.随着互联网和社交媒体的发展,文本信息往往伴随着图像等视觉模态信息出现,传统的命名实体识别方法在多模态信息中表现不佳.近年来,多模态命名实体识别任务广受重视.然而,现有的多模态命名实体识别方法中,存在跨模态知识间的细粒度对齐不足问题,文本表征会融合语义不相关的图像信息,进而引入噪声.为了解决这些问题,提出了一种基于细粒度图文对齐的多模态命名实体识别方法(FGITA:A Multi-Modal NER Frame based on Fine-Grained Image-Text Alignment).首先,该方法通过目标检测、语义相似性判断等,确定更为细粒度的文本实体和图像子对象之间的语义相关性;其次,通过双线性注意力机制,计算出图像子对象与实体的相关性权重,并依据权重将子对象信息融入到实体表征中;最后,提出了一种跨模态对比学习方法,依据图像和实体之间的匹配程度,优化实体和图像在嵌入空间中的距离,借此帮助实体表征学习相关的图像信息.在两个公开数据集上的实验表明,FGITA优于5个主流多模态命名实体识别方法,验证了方法的有效性,同时验证了细粒度跨模态对齐在多模态命名实体识别任务中的重要性和优越性. 展开更多
关键词 多模态 命名实体识别 信息抽取 知识图谱 对比学习
在线阅读 下载PDF
基于k核分解的网络嵌入
10
作者 张和平 张和贵 +3 位作者 谢晓尧 张太华 张思聪 喻国军 《计算机工程》 北大核心 2025年第2期139-148,共10页
近年来,网络嵌入技术受到了广大研究者的关注。不过大多数网络嵌入算法并未考虑到处于相同层级结构的节点间的结构相似性,这些节点在网络中通常具有相同的重要性。因此,提出一种基于网络层级结构的网络嵌入算法,称为KCNE。KCNE算法使用... 近年来,网络嵌入技术受到了广大研究者的关注。不过大多数网络嵌入算法并未考虑到处于相同层级结构的节点间的结构相似性,这些节点在网络中通常具有相同的重要性。因此,提出一种基于网络层级结构的网络嵌入算法,称为KCNE。KCNE算法使用网络节点间的层级结构信息来保持节点之间的结构相似性。该算法首先基于k核(k-core)分解方法将网络中的节点划分为不同的层级,并且使用定制的随机游走方法为每个节点生成游走序列,该序列可以有效捕获节点的一阶邻域及处于同层级中的高阶相似节点,随后将游走序列输入到Skip-gram模型中,使学习到的节点表示具有更好的区分性。基于多个真实数据集的实验结果表明,在链路预测和节点分类任务上,KCNE算法相比于8个基准算法中的次优算法性能提升最高分别约4%和5%。参数敏感性分析实验也表明了KCNE算法具有较好的鲁棒性。此外,该算法在运行效率方面均优于Role2Vec、RARE和GEMSEC算法。 展开更多
关键词 网络嵌入 结构相似性 随机游走 链路预测 节点分类
在线阅读 下载PDF
基于交叉融合自注意力的点云语义分割
11
作者 舒军 王帅 +1 位作者 杨莉 陈宇 《中南民族大学学报(自然科学版)》 CAS 2025年第1期96-106,共11页
针对目前点云语义分割算法通常采用简单的串联三维原始坐标信息方式建模几何信息,导致建模不完整问题.提出了交叉融合自注意力网络,在该网络的编码层中设计了交叉融合自注意力机制模块,通过交互学习坐标和特征信息,提高局部细粒度特征... 针对目前点云语义分割算法通常采用简单的串联三维原始坐标信息方式建模几何信息,导致建模不完整问题.提出了交叉融合自注意力网络,在该网络的编码层中设计了交叉融合自注意力机制模块,通过交互学习坐标和特征信息,提高局部细粒度特征描述能力,使得几何信息建模更加完整.同时为了更好地结合浅层与高层特征,提出了一种层级特征融合模块,通过自适应地连接网络不同层,实现不同层的特征整合.在S3DIS、Semantic3D和SemanticKITTI数据集上实验表明:该算法优于RandLA-Net等先进算法. 展开更多
关键词 点云 语义分割 交叉融合自注意力 层级特征融合
在线阅读 下载PDF
基于时空约束和成本感知的集合空间关键字查询
12
作者 李松 曹文琪 +2 位作者 郝晓红 张丽平 郝忠孝 《计算机研究与发展》 北大核心 2025年第3期808-819,共12页
集合空间关键字查询在空间数据库、位置服务、智能推荐和群智感知等领域具有重要的作用.现有的集合空间关键字查询方法没有考虑要求同时带有时空约束和成本感知的问题,不能满足大部分用户在时空约束条件下的查询需求问题,已有研究成果... 集合空间关键字查询在空间数据库、位置服务、智能推荐和群智感知等领域具有重要的作用.现有的集合空间关键字查询方法没有考虑要求同时带有时空约束和成本感知的问题,不能满足大部分用户在时空约束条件下的查询需求问题,已有研究成果具有较大的局限性.为了弥补已有方法的不足,提出一种基于时空约束和成本感知的集合空间关键字查询TDCCA-Co SKQ.为了解决现有索引中无法同时包含关键字信息和时间信息的问题,提出了一种TDCIR-Tree索引,该索引融合了倒排文件和时间属性标签文件,可以减小查询计算的开销;为了有效地筛选出符合查询条件的集合,提出了一种TDCCA_PP算法,其中包括第1层剪枝算法、组间有序排列和第2层剪枝算法,可以提高关键字的查询效率;进一步提出了一种基于TDC成本函数的排序算法,TDC成本函数是由距离成本和时间成本组成的,其中包含代表用户偏好度的自变量系数α和β,可以增加用户的选择自由度,有效解决了现有的成本函数无法满足时空约束和成本感知的集合空间关键字查询的问题.理论研究与实验表明,所提出的方法具有较好的效率与准确性. 展开更多
关键词 集合空间关键字查询 时空约束 成本感知 倒排文件 时间属性标签文件
在线阅读 下载PDF
结合论文施引特征和分布式检索技术的引文耦合度算法设计
13
作者 郭锐锋 常志军 +3 位作者 董美 张建勇 钱力 董智鹏 《小型微型计算机系统》 北大核心 2025年第2期297-304,共8页
大规模科技文献知识库的全量引文耦合关系因计算量巨大的难题,阻碍了引文耦合知识服务在诸多业务场景的应用.本文提出了一种适用于大规模文献知识库的全量引文耦合度计算算法,根据施引特征过滤没有耦合关系的无效组合,避免计算过程中稀... 大规模科技文献知识库的全量引文耦合关系因计算量巨大的难题,阻碍了引文耦合知识服务在诸多业务场景的应用.本文提出了一种适用于大规模文献知识库的全量引文耦合度计算算法,根据施引特征过滤没有耦合关系的无效组合,避免计算过程中稀疏矩阵的产生,并引入多模式匹配技术,优化算法的整体时间复杂度为O(n log z).本算法在生产环境中依赖分布式搜索引擎集群完成工程化实施.在国家科技图书文献中心的3600万篇科技文献数据库上,对该方法与传统引文耦合方法进行了多组实验对比,并生成了6.59亿论文对的耦合度数据,为国家科技图书文献中心的引文耦合知识服务提供了数据支持,验证了该方法的准确性和实用性. 展开更多
关键词 引文耦合度 分布式搜索引擎 稀疏矩阵 施引特征 多模式匹配
在线阅读 下载PDF
基于深度学习的人脸呈现攻击检测方法研究进展
14
作者 孙锐 王菲 +2 位作者 冯惠东 张旭东 高隽 《计算机科学》 北大核心 2025年第2期323-335,共13页
随着人脸识别技术广泛应用于公共安全、金融支付等领域,呈现攻击(Presentation Attacks,PAs)对人脸识别系统的安全性构成了威胁。呈现攻击检测技术(Presentation Attacks Detection,PAD)旨在判断输入人脸的真伪,对维护识别系统的安全性... 随着人脸识别技术广泛应用于公共安全、金融支付等领域,呈现攻击(Presentation Attacks,PAs)对人脸识别系统的安全性构成了威胁。呈现攻击检测技术(Presentation Attacks Detection,PAD)旨在判断输入人脸的真伪,对维护识别系统的安全性和鲁棒性具有重要的研究意义。由于大规模数据集的不断涌现,基于深度学习的呈现攻击检测方法逐渐成为该领域的主流。文章对近期基于深度学习的人脸呈现攻击检测方法进行了综述。首先,概述了呈现攻击检测的定义、实施方式和常见的攻击类型;其次,分别从单模态和多模态入手,对近五年来深度学习类方法的发展趋势、技术原理和优缺点进行详细分析和总结;然后,介绍了PAD研究中使用的典型数据集及其特点,并给出算法的评估标准、协议和性能结果;最后,总结了PAD研究中面临的主要问题并展望了未来的发展趋势。 展开更多
关键词 呈现攻击检测 单模态 多模态 人脸呈现数据集 深度学习
在线阅读 下载PDF
基于调制-全局推理的弱监督语义分割算法研究
15
作者 刘洲峰 李冰芮 +3 位作者 杨瑞敏 李春雷 何媛 丁淑敏 《计算机工程》 北大核心 2025年第2期344-355,共12页
基于图像级标签的弱监督语义分割方法可利用少量带有图像级标签的注释对网络进行训练,从而减轻注释负担。然而,现有基于类激活映射的方法存在分割区域不完整的问题。为使最终分割预测结果包含更多前景目标,提出一种基于调制-全局推理的... 基于图像级标签的弱监督语义分割方法可利用少量带有图像级标签的注释对网络进行训练,从而减轻注释负担。然而,现有基于类激活映射的方法存在分割区域不完整的问题。为使最终分割预测结果包含更多前景目标,提出一种基于调制-全局推理的弱监督语义分割方法。在分类网络中,首先设计空间-通道激活调制模块以提取更完整的目标对象特征,从而避免类激活图过度关注显著性区域;其次提出全局推理单元模块,利用该模块捕获特征图中不相交区域和较远区域之间的全局关系以便选出包含更完整的目标对象,从而进一步增强非显著区域的特征;最后通过设计潜在目标挖掘模块以降低伪标签中的假阴性率,进而提取其中的丢失信息,从而有效缓解初始伪标签中目标区域不完整的问题。在分割网络中,将分类网络生成的初始预测和伪标签相结合,并通过非显著区域挖掘模块进一步生成掩蔽伪标签从而提升分割效果。实验结果表明,该方法在仅使用图像级标签的情况下,在Pascal VOC 2012验证集和测试集上的精度分别为69.5%和69.8%,在MS COCO 2014验证集上的精度为32.8%,同时可有效解决分割区域不完整的问题,优于已有方法。 展开更多
关键词 语义分割 弱监督 非显著区域 激活调制 全局推理单元
在线阅读 下载PDF
跨模态多层特征融合的遥感影像语义分割
16
作者 李智杰 程鑫 +3 位作者 李昌华 高元 薛靖裕 介军 《计算机科学与探索》 北大核心 2025年第4期989-1000,共12页
多模态语义分割网络能够利用不同模态中的互补信息来提高分割精度,在地物分类领域具有广泛的应用潜力。然而,现有的多模态遥感影像语义分割模型大多忽略了深度特征的几何形状信息,未将多层特征充分利用就进行融合,导致跨模态特征提取不... 多模态语义分割网络能够利用不同模态中的互补信息来提高分割精度,在地物分类领域具有广泛的应用潜力。然而,现有的多模态遥感影像语义分割模型大多忽略了深度特征的几何形状信息,未将多层特征充分利用就进行融合,导致跨模态特征提取不充分,融合效果不理想。针对这些问题,提出了一种基于多模态特征提取和多层特征融合的遥感影像语义分割模型。通过构建双分支编码器,模型能够分别提取遥感影像的光谱信息和归一化数字表面模型(nDSM)的高程信息,并深入挖掘nDSM的几何形状信息。引入跨层丰富模块细化完善每层特征,从深层到浅层充分利用多层的特征信息。完善后的特征通过注意力特征融合模块,对特征进行差异性互补和交叉融合,以减轻分支结构之间的差异,充分发挥多模态特征的优势,从而提高遥感影像分割精度。在ISPRS Vaihingen和Potsdam数据集上进行实验,mF1分数分别达到了90.88%和93.41%,平均交互比(mIoU)分别达到了83.49%和87.85%,相较于当前主流算法,该算法实现了更准确的遥感影像语义分割。 展开更多
关键词 遥感影像 归一化数字表面模型(nDSM) 语义分割 特征提取 特征融合
在线阅读 下载PDF
基于单幅图像形状特征的三维漫画人脸重建
17
作者 孙刘杰 王佳耀 王文举 《计算机工程与应用》 北大核心 2025年第1期282-290,共9页
针对单幅图像的三维漫画人脸重建存在地标检测准确性差和生成模型还原高频细节能力低的问题,提出了一种多尺度特征融合与高频信息映射的两阶段方法。在第一阶段中,多尺度通道融合地标检测器用于提高检测的准确性。其中多尺度特征由HRNe... 针对单幅图像的三维漫画人脸重建存在地标检测准确性差和生成模型还原高频细节能力低的问题,提出了一种多尺度特征融合与高频信息映射的两阶段方法。在第一阶段中,多尺度通道融合地标检测器用于提高检测的准确性。其中多尺度特征由HRNet产生;由通道注意力和Swin Transformer构成的注意力层用于多尺度通道融合特征提取;为了提高生成地标的精度,损失函数由地标损失和热图损失两部分构成。在第二阶段中,傅里叶特征共享层变形网络使生成的三维漫画人脸具有更丰富的高频形状细节。其中傅里叶特征映射提取高维特征,使网络学习更多形状的高频信息;共享层超网络加快了网络的收敛和重建速度。该方法应用于CaricatureFace和3DCaricShop数据集。实验结果表明,该方法中的地标检测器的平均检测误差减少了4.4%;变形网络在形状重建上的均方误差减少了26%,并且平均重建时间减少了18%;最终重建出的三维漫画人脸具有夸张的形状和自然的细节。 展开更多
关键词 地标检测 三维漫画人脸 人脸重建 三维形变模型 深度学习 自解码器
在线阅读 下载PDF
基于跨模态特征重构与解耦网络的多模态抑郁症检测方法
18
作者 赵小明 谌自强 张石清 《计算机应用研究》 北大核心 2025年第1期236-241,共6页
抑郁症是一种广泛而严重的心理健康障碍,需要早期检测以便进行有效的干预。因为跨模态之间存在的信息冗余和模态间的异质性,集成音频和文本模态的自动化抑郁症检测是一个具有挑战性但重要的问题,先前的研究通常未能充分地明确学习音频-... 抑郁症是一种广泛而严重的心理健康障碍,需要早期检测以便进行有效的干预。因为跨模态之间存在的信息冗余和模态间的异质性,集成音频和文本模态的自动化抑郁症检测是一个具有挑战性但重要的问题,先前的研究通常未能充分地明确学习音频-文本模态的相互作用以用于抑郁症检测。为了解决这些问题,提出了基于跨模态特征重构与解耦网络的多模态抑郁症检测方法(CFRDN)。该方法以文本作为核心模态,引导模型重构音频特征用于跨模态特征解耦任务。该框架旨在从文本引导重构的音频特征中解离共享和私有特征,以供后续的多模态融合使用。在DAIC-WoZ和E-DAIC数据集上进行了充分的实验,结果显示所提方法在多模态抑郁症检测任务上优于现有技术。 展开更多
关键词 多模态 抑郁症检测 特征重构 特征解耦 特征融合
在线阅读 下载PDF
基于深度学习的低光照图像增强研究综述
19
作者 孙福艳 吕准 吕宗旺 《计算机应用研究》 北大核心 2025年第1期19-27,共9页
低光照图像增强的目的是优化在光线不足的环境中捕获的图像,提升其亮度和对比度。目前,深度学习在低光照图像增强领域已成为主要方法,因此,有必要对基于深度学习的方法进行综述。首先,将传统低光照图像增强方法进行分类,并分析与总结其... 低光照图像增强的目的是优化在光线不足的环境中捕获的图像,提升其亮度和对比度。目前,深度学习在低光照图像增强领域已成为主要方法,因此,有必要对基于深度学习的方法进行综述。首先,将传统低光照图像增强方法进行分类,并分析与总结其优缺点。接着,重点介绍基于深度学习的方法,将其分为有监督和无监督两大类,分别总结其优缺点,随后总结应用在深度学习下的损失函数。其次,对常用的数据集和评价指标进行简要总结,使用信息熵对传统方法进行量化比较,采用峰值信噪比和结构相似性对基于深度学习的方法进行客观评价。最后,总结目前方法存在的不足,并对未来的研究方向进行展望。 展开更多
关键词 低光照图像增强 深度学习 有监督 特征提取 无监督
在线阅读 下载PDF
基于边界信息的自适应过采样算法
20
作者 杜睿山 靳明洋 +1 位作者 孟令东 宋健辉 《郑州大学学报(理学版)》 CAS 北大核心 2025年第1期23-30,共8页
针对人工少数类过采样(synthetic minority over-sampling technique,SMOTE)算法存在样本合成区域狭小,容易将少数类泛化到多数类及引入噪声的问题,提出一种基于噪声过滤、边界点自适应采样的过采样算法。首先,该算法使用K近邻算法进行... 针对人工少数类过采样(synthetic minority over-sampling technique,SMOTE)算法存在样本合成区域狭小,容易将少数类泛化到多数类及引入噪声的问题,提出一种基于噪声过滤、边界点自适应采样的过采样算法。首先,该算法使用K近邻算法进行噪声过滤,接着确定边界点并在边界点中寻找合适的点作为根样本点,并以其K近邻点中与其同类且欧氏距离最远的点作为候选样本点。然后,根据根样本点所携带的边界信息确定该点所合成的样本数量,并根据根样本点和候选样本点生成一个N维球体作为样本的合成区间。最后,对合成样本进行判断以确定其是否满足条件。通过实验证明,该算法生成的样本质量要优于SMOTE及其常见变种算法。 展开更多
关键词 SMOTE KNN 过采样算法 数据不均衡 ISMOTE
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部