Due to scale effects,micromechanical resonators offer an excellent platform for investigating the intrinsic mechanisms of nonlinear dynamical phenomena and their potential applications.This review focuses on mode-coup...Due to scale effects,micromechanical resonators offer an excellent platform for investigating the intrinsic mechanisms of nonlinear dynamical phenomena and their potential applications.This review focuses on mode-coupled micromechanical resonators,highlighting the latest advancements in four key areas:internal resonance,synchronization,frequency combs,and mode localization.The origin,development,and potential applications of each of these dynamic phenomena within mode-coupled micromechanical systems are investigated,with the goal of inspiring new ideas and directions for researchers in this field.展开更多
A nonlinear saturation mechanism for reversed shear Alfvén eigenmode(RSAE)is proposed and analyzed,and is shown to be of relevance to typical reactor parameter region.The saturation is achieved through the genera...A nonlinear saturation mechanism for reversed shear Alfvén eigenmode(RSAE)is proposed and analyzed,and is shown to be of relevance to typical reactor parameter region.The saturation is achieved through the generation of high-frequency quasi-mode due to nonlinear coupling of two RSAEs,which is then damped due to coupling with the shear Alfvén continuum,and leads to the nonlinear saturation of the primary RSAEs.An estimation of the nonlinear damping rate is also provided.展开更多
The subtropical North and South Pacific Meridional Modes(NPMM and SPMM)are well known precursors of El Niño-Southern Oscillation(ENSO).However,relationship between them is not constant.In the early 1980,the relat...The subtropical North and South Pacific Meridional Modes(NPMM and SPMM)are well known precursors of El Niño-Southern Oscillation(ENSO).However,relationship between them is not constant.In the early 1980,the relationship experienced an interdecadal transition.Changes in this connection can be attributed mainly to the phase change of the Pacific decadal oscillation(PDO).During the positive phase of PDO,a shallower thermocline in the central Pacific is responsible for the stronger trade wind charging(TWC)mechanism,which leads to a stronger equatorial subsurface temperature evolution.This dynamic process strengthens the connection between NPMM and ENSO.Associated with the negative phase of PDO,a shallower thermocline over southeastern Pacific allows an enhanced wind-evaporation-SST(WES)feedback,strengthening the connection between SPMM and ENSO.Using 35 Coupled Model Intercomparison Project Phase 6(CMIP6)models,we examined the NPMM/SPMM performance and its connection with ENSO in the historical runs.The great majority of CMIP6 models can reproduce the pattern of NPMM and SPMM well,but they reveal discrepant ENSO and NPMM/SPMM relationship.The intermodal uncertainty for the connection of NPMM-ENSO is due to different TWC mechanism.A stronger TWC mechanism will enhance NPMM forcing.For SPMM,few models can simulate a good relationship with ENSO.The intermodel spread in the relationship of SPMM and ENSO owing to SST bias in the southeastern Pacific,as WES feedback is stronger when the southeastern Pacific is warmer.展开更多
Fabry–Perot(FP)modes are a class of fundamental resonances in photonic crystal(PhC)slabs.Owing to their low quality factors,FP modes are frequently considered as background fields with their resonance nature being ne...Fabry–Perot(FP)modes are a class of fundamental resonances in photonic crystal(PhC)slabs.Owing to their low quality factors,FP modes are frequently considered as background fields with their resonance nature being neglected.Nevertheless,FP modes can play important roles in some phenomena,as exemplified by their coupling with guided resonance(GR)modes to achieve bound states in the continuum(BIC).Here,we further demonstrate the genuine resonance mode capability of FP modes PhC slabs.Firstly,we utilize temporal coupled-mode theory to obtain the transmittance of a PhC slab based on the FP modes.Secondly,we construct exceptional points(EPs)in both momentum and parameter spaces through the coupling of FP and GR modes.Furthermore,we identify a Fermi arc connecting two EPs and discuss the far-field polarization topology.This work elucidates that the widespread FPs in PhC slabs can serve as genuine resonant modes,facilitating the realization of desired functionalities through mode coupling.展开更多
To investigate the influences of co-flowand counter-flowmodes of reactant flowarrangement on a proton exchange membrane fuel cell(PEMFC)during start-up,unsteady physical and mathematical models fully coupling the flow...To investigate the influences of co-flowand counter-flowmodes of reactant flowarrangement on a proton exchange membrane fuel cell(PEMFC)during start-up,unsteady physical and mathematical models fully coupling the flow,heat,and electrochemical reactions in a PEMFC are established.The continuity equation and momentum equation are solved by handling pressure-velocity coupling using the SIMPLE algorithm.The electrochemical reaction rates in the catalyst layers(CLs)of the cathode and anode are calculated using the Butler-Volmer equation.The multiphase mixture model describes the multiphase transport process of gas mixtures and liquid water in the fuel cell.After validation,the influences of co-flow and counter-flow modes on the PEMFC performance are investigated,including the evolution of the current density,flow field,temperature field,and reactant concentration field during start-up,as well as the steady distribution of the current density,reactant concentration,andmembrane water content when the start-up stabilizes.Co-flow and counter-flow modes influence the current density distribution and temperature distribution.On the one hand,the co-flow mode accelerates the start-up process of the PEMFC and leads to a more evenly distributed current density than the counter-flow mode.On the other hand,the temperature difference between the inlet and outlet sections of the cell is up to 10.1℃ under the co-flow mode,much larger than the 5.0℃ observed in the counter-flow mode.Accordingly,the counter-flowmode results in a more evenly distributed temperature and a lower maximum temperature than the co-flow case.Therefore,in the flow field design of a PEMFC,the reactant flow arrangements can be considered to weigh between better heat management and higher current density distribution of the cell.展开更多
Density limit has long been a widely studied issue influencing the operating range of tokamaks.The rapid growth of the m/n=2/1(where m and n are poloidal and toroidal mode numbers,respectively)tearing mode is generall...Density limit has long been a widely studied issue influencing the operating range of tokamaks.The rapid growth of the m/n=2/1(where m and n are poloidal and toroidal mode numbers,respectively)tearing mode is generally regarded as a primary precursor to the density limit disruption.In this experiment,the coupling of the m/n=1/1 mode and the m/n=2/1 mode in highdensity plasma was observed.During a sawtooth cycle,the frequencies of the two modes gradually converge until they become equal.After that,toroidal coupling occurs between the 1/1 and 2/1 modes,resulting in a mutually fixed phase relationship.With the occurrence of toroidal coupling,the 2/1 mode is stabilized.Prior to the disruption,the cessation of the 1/1 and 2/1 mode coupling,along with the rapid growth in the amplitude of the 2/1 mode,can be observed.Additionally,under the same parameters,comparing discharges with or without the 1/1 mode,it is found that the presence of the 1/1 mode leads to higher plasma density and temperature parameters.展开更多
The CLT code was used to quantitatively study the impact of toroidal mode coupling on the explosive dynamics of the m/n=3/1 double tearing mode.The focus of this study was on explosive reconnection processes,in which ...The CLT code was used to quantitatively study the impact of toroidal mode coupling on the explosive dynamics of the m/n=3/1 double tearing mode.The focus of this study was on explosive reconnection processes,in which the energy bursts and the main mode no longer dominates when the separation between two rational surfaces is relatively large in the medium range.The development of higher m and n modes is facilitated by a relatively large separation between two rational surfaces,a small q_(min)(the minimum value of the safety factor),or low resistivity.The relationships between the higher m and n mode development,explosive reconnection rate,and position exchange of 3/1 islands are summarized for the first time.Separation plays a more important role than q_(min)in enhancing the development of higher m and n modes.At a relatively large separation,the good development of higher m and n modes greatly reduces the reconnection rate and suppresses the development of the main mode,resulting in the main mode not being able to develop sufficiently large to generate the position changes of 3/1 islands.展开更多
This work presents a novel radio frequency(RF)narrowband Si micro-electro-mechanical systems(MEMS)filter based on capacitively transduced slotted width extensional mode(WEM)resonators.The flexibility of the plate lead...This work presents a novel radio frequency(RF)narrowband Si micro-electro-mechanical systems(MEMS)filter based on capacitively transduced slotted width extensional mode(WEM)resonators.The flexibility of the plate leads to multiple modes near the target frequency.The high Q-factor resonators of around 100000 enable narrow bandwidth filters with small size and simplified design.The 1-wavelength and 2-wavelength WEMs were first developed as a pair of coupled modes to form a passband.To reduce bandwidth,two plates are coupled with aλ-length coupling beam.The 79.69 MHz coupled plate filter(CPF)achieved a narrow bandwidth of 8.8 kHz,corresponding to a tiny 0.011%.The CPF exhibits an impressive 34.84 dB stopband rejection and 7.82 dB insertion loss with near-zero passband ripple.In summary,the RF MEMS filter presented in this work shows promising potential for application in RF transceiver front-ends.展开更多
For the prediction of ENSO, the accuracy of the model including the parameters, initial value and others of the model is important, which can be retrieved by the variational data assimilation methods developed in rece...For the prediction of ENSO, the accuracy of the model including the parameters, initial value and others of the model is important, which can be retrieved by the variational data assimilation methods developed in recent years. However, when the nonlinearity of the model is quite strong, the effect of the improvement made by the 4-D variational data assimilation may be poor due to the bad approximation of the tangent linear model to the original model. So in the paper the ideas in the optimal control is introduced to improve the effect of 4-DVAR in the inversion of the parameters of a nonlinear dynamic ENSO model. The results indicate that when the terminal controlling term is added to the cost functional of 4DVAR, which originated from the optimal control, the effect of the inversion may be largely improved comparing to the traditional 4DVAR, as can be especially obvious from the phase orbit of the model variables. The results in the paper also suggest that the method of 4DVAR in combination with optimal control cannot only reduce the error resulting from the inaccuracy of the model parameters but also can correct the parameters itself. This gives a good method in modifying the model and improving the quality of prediction of ENSO.展开更多
基金supported by the National Key Research and Development Program of China(No.2022YFB3203600)the National Natural Science Foundation of China(Nos.12202355,12132013,and 12172323)the Zhejiang Provincial Natural Science Foundation of China(No.LZ22A020003)。
文摘Due to scale effects,micromechanical resonators offer an excellent platform for investigating the intrinsic mechanisms of nonlinear dynamical phenomena and their potential applications.This review focuses on mode-coupled micromechanical resonators,highlighting the latest advancements in four key areas:internal resonance,synchronization,frequency combs,and mode localization.The origin,development,and potential applications of each of these dynamic phenomena within mode-coupled micromechanical systems are investigated,with the goal of inspiring new ideas and directions for researchers in this field.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB0790000)the Collaborative Innovation Program of Hefei Science Center,CAS(No.2022HSC-CIP008)National Natural Science Foundation of China(Nos.12275236 and 12261131622)。
文摘A nonlinear saturation mechanism for reversed shear Alfvén eigenmode(RSAE)is proposed and analyzed,and is shown to be of relevance to typical reactor parameter region.The saturation is achieved through the generation of high-frequency quasi-mode due to nonlinear coupling of two RSAEs,which is then damped due to coupling with the shear Alfvén continuum,and leads to the nonlinear saturation of the primary RSAEs.An estimation of the nonlinear damping rate is also provided.
基金Supported by the National Natural Science Foundation of China(NSFC)(No.41976027)。
文摘The subtropical North and South Pacific Meridional Modes(NPMM and SPMM)are well known precursors of El Niño-Southern Oscillation(ENSO).However,relationship between them is not constant.In the early 1980,the relationship experienced an interdecadal transition.Changes in this connection can be attributed mainly to the phase change of the Pacific decadal oscillation(PDO).During the positive phase of PDO,a shallower thermocline in the central Pacific is responsible for the stronger trade wind charging(TWC)mechanism,which leads to a stronger equatorial subsurface temperature evolution.This dynamic process strengthens the connection between NPMM and ENSO.Associated with the negative phase of PDO,a shallower thermocline over southeastern Pacific allows an enhanced wind-evaporation-SST(WES)feedback,strengthening the connection between SPMM and ENSO.Using 35 Coupled Model Intercomparison Project Phase 6(CMIP6)models,we examined the NPMM/SPMM performance and its connection with ENSO in the historical runs.The great majority of CMIP6 models can reproduce the pattern of NPMM and SPMM well,but they reveal discrepant ENSO and NPMM/SPMM relationship.The intermodal uncertainty for the connection of NPMM-ENSO is due to different TWC mechanism.A stronger TWC mechanism will enhance NPMM forcing.For SPMM,few models can simulate a good relationship with ENSO.The intermodel spread in the relationship of SPMM and ENSO owing to SST bias in the southeastern Pacific,as WES feedback is stronger when the southeastern Pacific is warmer.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12074049 and 12347101)。
文摘Fabry–Perot(FP)modes are a class of fundamental resonances in photonic crystal(PhC)slabs.Owing to their low quality factors,FP modes are frequently considered as background fields with their resonance nature being neglected.Nevertheless,FP modes can play important roles in some phenomena,as exemplified by their coupling with guided resonance(GR)modes to achieve bound states in the continuum(BIC).Here,we further demonstrate the genuine resonance mode capability of FP modes PhC slabs.Firstly,we utilize temporal coupled-mode theory to obtain the transmittance of a PhC slab based on the FP modes.Secondly,we construct exceptional points(EPs)in both momentum and parameter spaces through the coupling of FP and GR modes.Furthermore,we identify a Fermi arc connecting two EPs and discuss the far-field polarization topology.This work elucidates that the widespread FPs in PhC slabs can serve as genuine resonant modes,facilitating the realization of desired functionalities through mode coupling.
基金supported by the Projects of Talents Recruitment of Guangdong University of Petrochemical Technology(No.2018rc14)Maoming City Science and Technology Plan Project(Nos.210427094551264 and 220415004552411).
文摘To investigate the influences of co-flowand counter-flowmodes of reactant flowarrangement on a proton exchange membrane fuel cell(PEMFC)during start-up,unsteady physical and mathematical models fully coupling the flow,heat,and electrochemical reactions in a PEMFC are established.The continuity equation and momentum equation are solved by handling pressure-velocity coupling using the SIMPLE algorithm.The electrochemical reaction rates in the catalyst layers(CLs)of the cathode and anode are calculated using the Butler-Volmer equation.The multiphase mixture model describes the multiphase transport process of gas mixtures and liquid water in the fuel cell.After validation,the influences of co-flow and counter-flow modes on the PEMFC performance are investigated,including the evolution of the current density,flow field,temperature field,and reactant concentration field during start-up,as well as the steady distribution of the current density,reactant concentration,andmembrane water content when the start-up stabilizes.Co-flow and counter-flow modes influence the current density distribution and temperature distribution.On the one hand,the co-flow mode accelerates the start-up process of the PEMFC and leads to a more evenly distributed current density than the counter-flow mode.On the other hand,the temperature difference between the inlet and outlet sections of the cell is up to 10.1℃ under the co-flow mode,much larger than the 5.0℃ observed in the counter-flow mode.Accordingly,the counter-flowmode results in a more evenly distributed temperature and a lower maximum temperature than the co-flow case.Therefore,in the flow field design of a PEMFC,the reactant flow arrangements can be considered to weigh between better heat management and higher current density distribution of the cell.
基金supported by National Natural Science Foundation of China(Nos.12175227 and 51821005)the Fundamental Research Funds for the Central Universities(No.USTC 20210079)the Collaborative Innovation Program of Hefei Science Center,CAS(No.2022HSC-CIP022)。
文摘Density limit has long been a widely studied issue influencing the operating range of tokamaks.The rapid growth of the m/n=2/1(where m and n are poloidal and toroidal mode numbers,respectively)tearing mode is generally regarded as a primary precursor to the density limit disruption.In this experiment,the coupling of the m/n=1/1 mode and the m/n=2/1 mode in highdensity plasma was observed.During a sawtooth cycle,the frequencies of the two modes gradually converge until they become equal.After that,toroidal coupling occurs between the 1/1 and 2/1 modes,resulting in a mutually fixed phase relationship.With the occurrence of toroidal coupling,the 2/1 mode is stabilized.Prior to the disruption,the cessation of the 1/1 and 2/1 mode coupling,along with the rapid growth in the amplitude of the 2/1 mode,can be observed.Additionally,under the same parameters,comparing discharges with or without the 1/1 mode,it is found that the presence of the 1/1 mode leads to higher plasma density and temperature parameters.
基金supported by the National MCF Energy R&D Program of China(Nos.2022YFE03100000 and 2019YFE03030004)National Natural Science Foundation of China(No.11835010)+1 种基金the Natural Science Foundation of Shandong Province(No.ZR2021MA074)the National College Students’Innovation and Entrepreneurship Training Program(No.202211066017)。
文摘The CLT code was used to quantitatively study the impact of toroidal mode coupling on the explosive dynamics of the m/n=3/1 double tearing mode.The focus of this study was on explosive reconnection processes,in which the energy bursts and the main mode no longer dominates when the separation between two rational surfaces is relatively large in the medium range.The development of higher m and n modes is facilitated by a relatively large separation between two rational surfaces,a small q_(min)(the minimum value of the safety factor),or low resistivity.The relationships between the higher m and n mode development,explosive reconnection rate,and position exchange of 3/1 islands are summarized for the first time.Separation plays a more important role than q_(min)in enhancing the development of higher m and n modes.At a relatively large separation,the good development of higher m and n modes greatly reduces the reconnection rate and suppresses the development of the main mode,resulting in the main mode not being able to develop sufficiently large to generate the position changes of 3/1 islands.
基金supported by the National Natural Science Foundation of China(61734007)National Key Research and Development Program of China(2022YFF0706100).
文摘This work presents a novel radio frequency(RF)narrowband Si micro-electro-mechanical systems(MEMS)filter based on capacitively transduced slotted width extensional mode(WEM)resonators.The flexibility of the plate leads to multiple modes near the target frequency.The high Q-factor resonators of around 100000 enable narrow bandwidth filters with small size and simplified design.The 1-wavelength and 2-wavelength WEMs were first developed as a pair of coupled modes to form a passband.To reduce bandwidth,two plates are coupled with aλ-length coupling beam.The 79.69 MHz coupled plate filter(CPF)achieved a narrow bandwidth of 8.8 kHz,corresponding to a tiny 0.011%.The CPF exhibits an impressive 34.84 dB stopband rejection and 7.82 dB insertion loss with near-zero passband ripple.In summary,the RF MEMS filter presented in this work shows promising potential for application in RF transceiver front-ends.
基金supported by the National Science Foundation of China (40775023)the Science Foundation for Doctor of the Institute of Meteorology of PLA University of Sci.and Tech
文摘For the prediction of ENSO, the accuracy of the model including the parameters, initial value and others of the model is important, which can be retrieved by the variational data assimilation methods developed in recent years. However, when the nonlinearity of the model is quite strong, the effect of the improvement made by the 4-D variational data assimilation may be poor due to the bad approximation of the tangent linear model to the original model. So in the paper the ideas in the optimal control is introduced to improve the effect of 4-DVAR in the inversion of the parameters of a nonlinear dynamic ENSO model. The results indicate that when the terminal controlling term is added to the cost functional of 4DVAR, which originated from the optimal control, the effect of the inversion may be largely improved comparing to the traditional 4DVAR, as can be especially obvious from the phase orbit of the model variables. The results in the paper also suggest that the method of 4DVAR in combination with optimal control cannot only reduce the error resulting from the inaccuracy of the model parameters but also can correct the parameters itself. This gives a good method in modifying the model and improving the quality of prediction of ENSO.