Letq>1,and let E be a real q-uniformly smooth Banach space. Let T: E→E be a continuous φstrongly accretive operator.For a given f E,let x*denote the unique solution of the equation Tx=f.Define the operator H:E→E...Letq>1,and let E be a real q-uniformly smooth Banach space. Let T: E→E be a continuous φstrongly accretive operator.For a given f E,let x*denote the unique solution of the equation Tx=f.Define the operator H:E→E by Hx=f+x-Tx,and suppose that the range of H is bounded. for any x1 E let {xn}∞n=qin E be the Ishikawa iterative process defined by Under suitable comditions,the Ishikawa iterative process strongly converges to the unique solution of Tx=f.the related result deals with the problems that Ishikawa iterative process strongly converges to the unique fixed point of -hemicontractive mappings.These results generalize results of Osilike [2],Chidume[4,5]and Tan[10],Zeng[11]and several other results from the class of strongly assertive operators and the class of strongly pseudocontractive operators to the much more general class of -trongly accrtive and class of -hemicontractive maps.展开更多
基金the National Natural Science Foundation of China under Grant No. 19801017 andthe Foundation for University Key Teacher by th
文摘Letq>1,and let E be a real q-uniformly smooth Banach space. Let T: E→E be a continuous φstrongly accretive operator.For a given f E,let x*denote the unique solution of the equation Tx=f.Define the operator H:E→E by Hx=f+x-Tx,and suppose that the range of H is bounded. for any x1 E let {xn}∞n=qin E be the Ishikawa iterative process defined by Under suitable comditions,the Ishikawa iterative process strongly converges to the unique solution of Tx=f.the related result deals with the problems that Ishikawa iterative process strongly converges to the unique fixed point of -hemicontractive mappings.These results generalize results of Osilike [2],Chidume[4,5]and Tan[10],Zeng[11]and several other results from the class of strongly assertive operators and the class of strongly pseudocontractive operators to the much more general class of -trongly accrtive and class of -hemicontractive maps.
基金Foundation items: The Teaching and Research Award Fund for Outstanding Young Teachers in Higher Education Institutions of MOE, China The Dawn Program Fund in Shanghai.
基金Foundation item:Supported by both the teaching and Research Award Fund for Outstanding Yong Teachers in Higher Education Istitutions of MOE and the National Natural Science Foundation(19801023)