期刊文献+
共找到48,867篇文章
< 1 2 250 >
每页显示 20 50 100
Complex Adaptive Systems:Computational Modeling and Simulation in the Social Sciences
1
作者 Qiang SUN 《计算社会科学》 2025年第1期17-36,共20页
This paper develops a comprehensive computational modeling and simulation framework based on Complex Adaptive Systems(CAS)theory to unveil the underlying mechanisms of self-organization,nonlinear evolution,and emergen... This paper develops a comprehensive computational modeling and simulation framework based on Complex Adaptive Systems(CAS)theory to unveil the underlying mechanisms of self-organization,nonlinear evolution,and emergence in social systems.By integrating mathematical models,agent-based modeling,network dynamic analysis,and hybrid modeling approaches,the study applies CAS theory to case studies in economic markets,political decision-making,and social interactions.The experimental results demonstrate that local interactions among individual agents can give rise to complex global phenomena,such as market fluctuations,opinion polarization,and sudden outbreaks of social movements.This framework not only provides a more robust explanation for the nonlinear dynamics and abrupt transitions that traditional models often fail to capture,but also offers valuable decision-support tools for public policy formulation,social governance,and risk management.Emphasizing the importance of interdisciplinary approaches,this work outlines future research directions in high-performance computing,artificial intelligence,and real-time data integration to further advance the theoretical and practical applications of CAS in the social sciences. 展开更多
关键词 Complex Adaptive Systems Computational modeling Simulation Experiments Agent-Based modeling Network Analysis EMERGENCE Nonlinear Dynamics Social Systems
在线阅读 下载PDF
3D crustal density modeling of Egypt using GOCE satellite gravity data and seismic integration 被引量:1
2
作者 Moataz Sayed Mohamed Sobh +2 位作者 Salah Saleh Amal Othman Ahmed Elmahmoudi 《Earthquake Science》 2025年第2期110-125,共16页
A 3D crustal model was constructed using a combination of cutting-edge techniques,which were integrated to provide a density model for Egypt and address the sporadic distribution of seismic data.These techniques inclu... A 3D crustal model was constructed using a combination of cutting-edge techniques,which were integrated to provide a density model for Egypt and address the sporadic distribution of seismic data.These techniques include obtaining gravity data from the Gravity Field and Steady-State Ocean Circulation Explorer(GOCE),creating seismic profiles,analyzing the receiver functions of seismic data,obtaining information from boreholes,and providing geological interpretations.GOCE satellite gravity data were processed to construct a preliminary model based on nonlinear inversions of the data.A regional crustal thickness model was developed using receiver functions,seismic refraction profiles,and geological insights.The inverted model was validated using borehole data and compared with seismic estimates.The model exhibited strong consistency and revealed a correlation between crustal thickness,geology,and tectonics of Egypt.It showed that the shallowest depths of the Moho are located in the north along the Mediterranean Sea and in the eastern part along the Red Sea,reflecting an oceanic plate with a thin,high-density crust.The deepest Moho depths are located in the southwestern part of Egypt,Red Sea coastal mountains,and Sinai Peninsula.The obtained 3D model of crustal thickness provided finely detailed Moho depth estimates that aligned closely with geology and tectonic characteristics of Egypt,contributing valuable insights into the subsurface structure and tectonic processes of region. 展开更多
关键词 GOCE satellite gravity Moho depth crustal modeling gravity inversion
在线阅读 下载PDF
Modeling and Comprehensive Review of Signaling Storms in 3GPP-Based Mobile Broadband Networks:Causes,Solutions,and Countermeasures
3
作者 Muhammad Qasim Khan Fazal Malik +1 位作者 Fahad Alturise Noor Rahman 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期123-153,共31页
Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important a... Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject. 展开更多
关键词 Signaling storm problems control signaling load analytical modeling 3GPP networks smart devices diameter signaling mobile broadband data access data traffic mobility management signaling network architecture 5G mobile communication
在线阅读 下载PDF
Physical and numerical modeling of a framed anti-sliding structure for a mountainous railway line
4
作者 QIU Ruizhe LIU Kaiwen +3 位作者 YANG Zhixiang MA Chiyuan XIAO Jian SU Qian 《Journal of Southeast University(English Edition)》 2025年第1期12-19,共8页
To ensure the operational safety of railways in the landslide-prone areas of mountainous regions,a large-scale model test and numerical simulation were conducted to study the bending moment distribution,internal force... To ensure the operational safety of railways in the landslide-prone areas of mountainous regions,a large-scale model test and numerical simulation were conducted to study the bending moment distribution,internal force distribution,deformation development,and crack propagation characteristics of a framed anti-sliding structure(FAS)under landslide thrust up to the point of failure.Results show that the maximum bending moment and its increase rate in the fore pile are greater than those in the rear pile,with the maximum bending moment of the fore pile approximately 1.1 times that of the rear pile.When the FAS fails,the displacement at the top of the fore pile is significantly greater,about 1.27 times that of the rear pile in the experiment.Major cracks develop at locations corresponding to the peak bending moments.Small transverse cracks initially appear on the upper surface at the intersection between the primary beam and rear pile and then spread to the side of the structure.At the failure stage,major cracks are observed at the pil-beam intersections and near the anchor points.Strengthening flexural stiffness at intersections where major cracks occur can improve the overall thrust-deformation coordination of the FAS,thereby maximizing its performance. 展开更多
关键词 mountainous railway SLOPE framed anti-sliding structure model test finite element modeling mechanical responses
在线阅读 下载PDF
Dynamic modeling of minimum mass of pore-gas for triggering landslide in stable gentle soil slope
5
作者 Xingyu Kang Zhongqi Quentin Yue 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期652-670,共19页
This paper presents a dynamic modeling method to test and examine the minimum mass of pressurized pore-gas for triggering landslides in stable gentle soil slopes.A stable gentle soil slope model is constructed with a ... This paper presents a dynamic modeling method to test and examine the minimum mass of pressurized pore-gas for triggering landslides in stable gentle soil slopes.A stable gentle soil slope model is constructed with a dry cement powder core,a saturated clay middle layer,and a dry sand upper layer.The test injects H_(2)O_(2)solution into the cement core to produce new pore-gas.The model test includes three identical H_(2)O_(2)injections.The small mass of generated oxygen gas(0.07%of slope soil mass and landslide body)from the first injection can build sufficient pore-gas pressure to cause soil upheaval and slide.Meanwhile,despite the first injection causing leak paths in the clay layer,the generated small mass of gas from the second and third injections can further trigger the landslide.A dynamic theoretical analysis of the slope failure is carried out and the required minimum pore-gas pressure for the landslide is calculated.The mass and pressure of generated gas in the model test are also estimated based on the calibration test for oxygen generation from H_(2)O_(2)solution in cement powder.The results indicate that the minimum mass of the generated gas for triggering the landslide is 2 ppm to 0.07%of the landslide body.Furthermore,the small mass of gas can provide sufficient pressure to cause soil upheaval and soil sliding in dynamic analysis. 展开更多
关键词 LANDSLIDE Gentle soil slope Physical model test Minimum pore-gas mass Soil upheaval Dynamic modeling
在线阅读 下载PDF
Intelligent modeling method for OV models in DoDAF2.0 based on knowledge graph
6
作者 ZHANG Yue JIANG Jiang +3 位作者 YANG Kewei WANG Xingliang XU Chi LI Minghao 《Journal of Systems Engineering and Electronics》 2025年第1期139-154,共16页
Architecture framework has become an effective method recently to describe the system of systems(SoS)architecture,such as the United States(US)Department of Defense Architecture Framework Version 2.0(DoDAF2.0).As a vi... Architecture framework has become an effective method recently to describe the system of systems(SoS)architecture,such as the United States(US)Department of Defense Architecture Framework Version 2.0(DoDAF2.0).As a viewpoint in DoDAF2.0,the operational viewpoint(OV)describes operational activities,nodes,and resource flows.The OV models are important for SoS architecture development.However,as the SoS complexity increases,constructing OV models with traditional methods exposes shortcomings,such as inefficient data collection and low modeling standards.Therefore,we propose an intelligent modeling method for five OV models,including operational resource flow OV-2,organizational relationships OV-4,operational activity hierarchy OV-5a,operational activities model OV-5b,and operational activity sequences OV-6c.The main idea of the method is to extract OV architecture data from text and generate interoperable OV models.First,we construct the OV meta model based on the DoDAF2.0 meta model(DM2).Second,OV architecture named entities is recognized from text based on the bidirectional long short-term memory and conditional random field(BiLSTM-CRF)model.And OV architecture relationships are collected with relationship extraction rules.Finally,we define the generation rules for OV models and develop an OV modeling tool.We use unmanned surface vehicles(USV)swarm target defense SoS architecture as a case to verify the feasibility and effectiveness of the intelligent modeling method. 展开更多
关键词 system of systems(SoS)architecture operational viewpoint(OV)model meta model bidirectional long short-term memory and conditional random field(BiLSTM-CRF) model generation systems modeling language
在线阅读 下载PDF
Modeling the Conversion of Forest Land to Other Types of Occupation Due to Urban Growth in Five Forest Towns in the Congo Basin
7
作者 Stoffenne Malonga Binsangou Suspense Averti Ifo Benoit Mertens 《Open Journal of Ecology》 2025年第1期43-64,共22页
The conversion of forest land to other types of land cover is one of the major issues in the global fight against climate change. Understanding the direct and indirect factors of these conversions from local studies i... The conversion of forest land to other types of land cover is one of the major issues in the global fight against climate change. Understanding the direct and indirect factors of these conversions from local studies in the tropics is essential to project the future impact of human activities on the preservation of tropical forests in general and the forests of the Republic of Congo in particular. This study, conducted in five localities with different socioeconomic contexts in the Republic of Congo, aims to analyze the variability of drivers of deforestation and forest degradation linked to urbanization in the Congo Basin. Using a series of land cover maps from the years 1986, 2003 and 2019 for the cities of Ouesso, Pokola, Ngombe, Impfondo and Dongou, as well as field data and socio-economic information collected from local and central administrations, a unique model has been developed to understand the explanatory patterns of forest loss. Deforestation around urban centers is mainly due to urban agriculture due to population growth, as well as the spatial expansion of cities, which have a major impact on the stability and integrity of forests. Shifting agriculture is the main direct cause of deforestation and forest degradation, representing 48% of the total sample, followed by the collection of wood fuel (22%), the collection of construction wood (19%), illegal logging (6%) and urban expansion (5%). Forecasts indicate that forest loss around major cities will increase by 487, 20 ha to 5266, 73 ha by 2050 compared to the base year of 2019. This study highlights the need for a new system of land management and poverty alleviation of local populations to ensure the stability of the Congo Basin tropical forests around large and small African cities. 展开更多
关键词 DEFORESTATION Degradation modeling Congo Basin Land Use Change LANDSAT Strong Points
在线阅读 下载PDF
Physical Modeling of Reconfigurable Intelligent Surface for Channel Modeling
8
作者 MiaoWei Dou Jianwu +1 位作者 Cui Yijun Yang Zhenyu 《China Communications》 2025年第2期128-142,共15页
In this paper,a physical model of RIS of bistatic polarized radar cross section is derived starting from the Stratton-Chu equations under the assumptions of physical optics,PEC,far field and rectangular RIS element.In... In this paper,a physical model of RIS of bistatic polarized radar cross section is derived starting from the Stratton-Chu equations under the assumptions of physical optics,PEC,far field and rectangular RIS element.In the context of important physical characteristics of the backscattering polarization of RIS,the modeling of the RIS wireless channel requires a tradeoff between complexity and accuracy,as well as usability and simplicity.For channel modeling of RIS systems,RIS is modelled as multi-equivalent virtual base stations(BSs)induced by multi polarized electromagnetic waves from different incident directions.The comparison between test and simulation results demonstrates that the proposed algorithm effectively captures the key characteristics of the general RIS element polarization physical model and provides accurate results. 展开更多
关键词 channel modeling map-based hybrid channel model polarized model Reconfigurable intelligent surface(RIS)
在线阅读 下载PDF
Modeling and Performance Evaluation of Streaming Data Processing System in IoT Architecture
9
作者 Feng Zhu Kailin Wu Jie Ding 《Computers, Materials & Continua》 2025年第5期2573-2598,共26页
With the widespread application of Internet of Things(IoT)technology,the processing of massive realtime streaming data poses significant challenges to the computational and data-processing capabilities of systems.Alth... With the widespread application of Internet of Things(IoT)technology,the processing of massive realtime streaming data poses significant challenges to the computational and data-processing capabilities of systems.Although distributed streaming data processing frameworks such asApache Flink andApache Spark Streaming provide solutions,meeting stringent response time requirements while ensuring high throughput and resource utilization remains an urgent problem.To address this,the study proposes a formal modeling approach based on Performance Evaluation Process Algebra(PEPA),which abstracts the core components and interactions of cloud-based distributed streaming data processing systems.Additionally,a generic service flow generation algorithmis introduced,enabling the automatic extraction of service flows fromthe PEPAmodel and the computation of key performance metrics,including response time,throughput,and resource utilization.The novelty of this work lies in the integration of PEPA-based formal modeling with the service flow generation algorithm,bridging the gap between formal modeling and practical performance evaluation for IoT systems.Simulation experiments demonstrate that optimizing the execution efficiency of components can significantly improve system performance.For instance,increasing the task execution rate from 10 to 100 improves system performance by 9.53%,while further increasing it to 200 results in a 21.58%improvement.However,diminishing returns are observed when the execution rate reaches 500,with only a 0.42%gain.Similarly,increasing the number of TaskManagers from 10 to 20 improves response time by 18.49%,but the improvement slows to 6.06% when increasing from 20 to 50,highlighting the importance of co-optimizing component efficiency and resource management to achieve substantial performance gains.This study provides a systematic framework for analyzing and optimizing the performance of IoT systems for large-scale real-time streaming data processing.The proposed approach not only identifies performance bottlenecks but also offers insights into improving system efficiency under different configurations and workloads. 展开更多
关键词 System modeling performance evaluation streaming data process IoT system PEPA
在线阅读 下载PDF
Modeling of a Parabolic Cylindrical Solar Concentrator
10
作者 Bati Ernest Boya Bi Kpeusseu Angeline Kouambla Epse Yeo +1 位作者 Ekoun Paul Magloire Koffi Prosper Gbaha 《Open Journal of Applied Sciences》 2025年第1期53-69,共17页
This work aims at the mathematical modeling of a parabolic trough concentrator, the numerical resolution of the resulting equation, as well as the simulation of the heat transfer fluid heating process. To do this, a t... This work aims at the mathematical modeling of a parabolic trough concentrator, the numerical resolution of the resulting equation, as well as the simulation of the heat transfer fluid heating process. To do this, a thermal balance was established for the heat transfer fluid, the absorber and the glass. This allowed us to establish an equation system whose resolution was done by the finite difference method. Then, a computer program was developed to simulate the temperatures of the heat transfer fluid, the absorber tube and the glass as a function of time and space. The numerical resolution made it possible to obtain the temperatures of the heat transfer fluid, the absorber and the glass. The simulation of the fluid heating process was done in one-hour time steps, from six in the morning to six in the afternoon. The results obtained show that the temperature difference between the inlet and the outlet of the sensor is very significant. These results obtained, regarding the variation of the temperatures of the heat transfer fluid, the absorber and the glass, as well as the powers and efficiency of the parabolic trough concentrator and various factors, allow for the improvement of the performances of our prototype. 展开更多
关键词 modeling SIMULATION Parabolic Trough Concentrator Heat Transfer Fluid TEMPERATURE
在线阅读 下载PDF
Vector Extraction from Design Drawings for Intelligent 3D Modeling of Transmission Towers
11
作者 Ziqiang Tang Chao Han +5 位作者 Hongwu Li Zhou Fan Ke Sun Yuntian Huang Yuhang Chen Chenxing Wang 《Computers, Materials & Continua》 2025年第2期2813-2829,共17页
Accurate vector extraction from design drawings is required first to automatically create 3D models from pixel-level engineering design drawings. However, this task faces the challenges of complicated design shapes as... Accurate vector extraction from design drawings is required first to automatically create 3D models from pixel-level engineering design drawings. However, this task faces the challenges of complicated design shapes as well as cumbersome and cluttered annotations on drawings, which interfere with the vector extraction heavily. In this article, the transmission tower containing the most complex structure is taken as the research object, and a semantic segmentation network is constructed to first segment the shape masks from the pixel-level drawings. Preprocessing and postprocessing are also proposed to ensure the stability and accuracy of the shape mask segmentation. Then, based on the obtained shape masks, a vector extraction network guided by heatmaps is designed to extract structural vectors by fusing the features from node heatmap and skeleton heatmap, respectively. Compared with the state-of-the-art methods, experiment results illustrate that the proposed semantic segmentation method can effectively eliminate the interference of many elements on drawings to segment the shape masks effectively, meanwhile, the model trained by the proposed vector extraction network can accurately extract the vectors such as nodes and line connections, avoiding redundant vector detection. The proposed method lays a solid foundation for automatic 3D model reconstruction and contributes to technological advancements in relevant fields. 展开更多
关键词 Design drawings semantic segmentation deep learning vector extraction DIGITIZATION 3D modeling
在线阅读 下载PDF
Dynamic modeling and simulation of blade-casing system with rubbing considering time-varying stiffness and mass of casing
12
作者 Hui MA Hong GUAN +4 位作者 Lin QU Xumin GUO Qinqin MU Yao ZENG Yanyan CHEN 《Applied Mathematics and Mechanics(English Edition)》 2025年第5期849-868,共20页
As a common fault of the aero-engine,the blade-casing rubbing(BCR)has the potential to cause catastrophic accidents.In this paper,to investigate the dynamic responses and wear characteristics of the system,the laminat... As a common fault of the aero-engine,the blade-casing rubbing(BCR)has the potential to cause catastrophic accidents.In this paper,to investigate the dynamic responses and wear characteristics of the system,the laminated shell element is used to establish the finite element model(FEM)of a flexibly coated casing system.Using the shell element,the blade is modeled,and the surface stress of the blade is calculated.The stress-solving method of the blade is validated through comparisons with the measured time-domain waveform of the stress.Then,a dynamic model of a blade-flexibly coated casing system with rubbing is proposed,accounting for the time-varying mass and stiffness of the casing caused by coating wear.The effects of the proposed flexible casing model are compared with those of a rigid casing model,and the stress changes induced by rubbing are investigated.The results show that the natural characteristics of the coated casing decrease due to the coating wear.The flexibly coated casing model is found to be more suitable for studying casing vibration.Additionally,the stress changes caused by rubbing are slight,and the change in the stress maximum is approximately 5%under the influence of the abrasive coating. 展开更多
关键词 dynamic modeling flexibly coated casing RUBBING coating wear nonlinear vibration
在线阅读 下载PDF
Erosion Analysis of Static Components in Slurry Pumps Based on Reverse Modeling
13
作者 Zhengjing Shen Fanqiang Kong +3 位作者 Yu Liu Jilai Zeng Wengang Yang Jiangbo Wu 《Fluid Dynamics & Materials Processing》 2025年第3期589-603,共15页
Erosion in slurry pumps presents a persistent challenge in industrial applications.This study examines the erosion of the static components of a 150ZJ-C42 centrifugal slurry pump,currently in operation at a beneficiat... Erosion in slurry pumps presents a persistent challenge in industrial applications.This study examines the erosion of the static components of a 150ZJ-C42 centrifugal slurry pump,currently in operation at a beneficiation plant,under varying particle conditions.Utilizing high-precision three-dimensional reverse engineering,the pump’s flow passage geometry was reconstructed to facilitate detailed erosion analysis.Focusing on the front and rear baffles of the pump chamber,as well as the volute,erosion patterns were analyzed for different particle volume concentrations and sizes.The results reveal that the highest erosion damage consistently occurs near the volute tongue,with wear being most severe in regions adjacent to the partition plate near the rear cover.Erosion damage intensity in this area correlates positively with particle diameter.Notably,the average erosion rate in the volute surpasses that of the front and rear chamber liners,reaching a value as high as 6.03×10^(-7)kg·m^(-2)·s^(-1)at a particle concentration of 9%and diameter of 0.1 mm,adversely impacting pump stability.For the pump chamber baffles,increased erosion is observed at a particle diameter of 0.05 mm under constant volume concentration conditions,while higher particle concentrations exacerbate localized erosion. 展开更多
关键词 Slurry pump reverse modeling numerical simulation EROSION solid-liquid two-phase flow
在线阅读 下载PDF
Data-driven intelligent modeling of unconfined compressive strength of heavy metal-contaminated soil
14
作者 Syed Taseer Abbas Jaffar Xiangsheng Chen +3 位作者 Xiaohua Bao Muhammad Nouman Amjad Raja Tarek Abdoun Waleed El-Sekelly 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1801-1815,共15页
This study focuses on empirical modeling of the strength characteristics of urban soils contaminated with heavy metals using machine learning tools and their subsequent stabilization with ordinary Portland cement(OPC)... This study focuses on empirical modeling of the strength characteristics of urban soils contaminated with heavy metals using machine learning tools and their subsequent stabilization with ordinary Portland cement(OPC).For dataset collection,an extensive experimental program was designed to estimate the unconfined compressive strength(Qu)of heavy metal-contaminated soils collected from awide range of land use pattern,i.e.residential,industrial and roadside soils.Accordingly,a robust comparison of predictive performances of four data-driven models including extreme learning machines(ELMs),gene expression programming(GEP),random forests(RFs),and multiple linear regression(MLR)has been presented.For completeness,a comprehensive experimental database has been established and partitioned into 80%for training and 20%for testing the developed models.Inputs included varying levels of heavy metals like Cd,Cu,Cr,Pb and Zn,along with OPC.The results revealed that the GEP model outperformed its counterparts:explaining approximately 96%of the variability in both training(R2=0.964)and testing phases(R^(2)=0.961),and thus achieving the lowest RMSE and MAE values.ELM performed commendably but was slightly less accurate than GEP whereas MLR had the lowest performance metrics.GEP also provided the benefit of traceable mathematical equation,enhancing its applicability not just as a predictive but also as an explanatory tool.Despite its insights,the study is limited by its focus on a specific set of heavy metals and urban soil samples of a particular region,which may affect the generalizability of the findings to different contamination profiles or environmental conditions.The study recommends GEP for predicting Qu in heavy metal-contaminated soils,and suggests further research to adapt these models to different environmental conditions. 展开更多
关键词 Contaminated soil Heavy metals Machine learning Predictive modeling Compressive strength
在线阅读 下载PDF
Multiscale modeling of thermo-hydromechanical behavior of clayey rocks and application to geological disposal of radioactive waste
15
作者 Jianfu Shao Zhan Yu Minh-Ngoc Vu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期1-19,共19页
This work is devoted to numerical analysis of thermo-hydromechanical problem and cracking process in saturated porous media in the context of deep geological disposal of radioactive waste.The fundamental background of... This work is devoted to numerical analysis of thermo-hydromechanical problem and cracking process in saturated porous media in the context of deep geological disposal of radioactive waste.The fundamental background of thermo-poro-elastoplasticity theory is first summarized.The emphasis is put on the effect of pore fluid pressure on plastic deformation.A micromechanics-based elastoplastic model is then presented for a class of clayey rocks considered as host rock.Based on linear and nonlinear homogenization techniques,the proposed model is able to systematically account for the influences of porosity and mineral composition on macroscopic elastic properties and plastic yield strength.The initial anisotropy and time-dependent deformation are also taken into account.The induced cracking process is described by using a non-local damage model.A specific hybrid formulation is proposed,able to conveniently capture tensile,shear and mixed cracks.In particular,the influences of pore pressure and confining stress on the shear cracking mechanism are taken into account.The proposed model is applied to investigating thermo-hydromechanical responses and induced damage evolution in laboratory tests at the sample scale.In the last part,an in situ heating experiment is analyzed by using the proposed model.Numerical results are compared with experimental data and field measurements in terms of temperature variation,pore fluid pressure change and induced damaged zone. 展开更多
关键词 Radioactive waste Geological disposal Thermo-hydromechanical coupling Clayey rocks Damage and cracking Phase-field modeling
在线阅读 下载PDF
3D Computational Modeling and Stability Analysis of Highway Slope:A Case Study from the X104 Section in Ganxian County
16
作者 Fujie Dai Yiwen Jin +1 位作者 Yongliang Wang Jiajun Li 《Journal of Electronic Research and Application》 2025年第2期65-68,共4页
Highway planning requires geological surveys and stability analysis of the surrounding area.In the early stage of the survey,the modeling and stability analysis of the survey area can be carried out by using GIS softw... Highway planning requires geological surveys and stability analysis of the surrounding area.In the early stage of the survey,the modeling and stability analysis of the survey area can be carried out by using GIS software to intuitively understand the topography of the study area.The use of DEM to extract terrain factors can be used for simple stability analysis and the source data is easy to obtain,simple to operate,fast to analyze,and reliable analysis results.In this paper,taking the X104 road section in Ganxian County as an example,the ArcGIS platform is used to carry out 3D modeling visualization and stability analysis,and the stability evaluation map of the study area is obtained. 展开更多
关键词 3D modeling STABILITY GIS Highway planning
在线阅读 下载PDF
Solid solution dependence of the deformation behavior in Mg-xZn(x=0,1,2 wt%)alloys:In-situ neutron diffraction and crystal plasticity modeling
17
作者 Huai Wang Soo Yeol Lee +3 位作者 You Sub Kim Huamiao Wang Wanchuck Woo Ke An 《Journal of Magnesium and Alloys》 2025年第2期823-838,共16页
The effects of solid solution on the deformation behavior of binary Mg-xZn(x=0,1,2 wt%)alloys featuring a designated texture that enables extension twinning under tension parallel to the basal pole in most grains,were... The effects of solid solution on the deformation behavior of binary Mg-xZn(x=0,1,2 wt%)alloys featuring a designated texture that enables extension twinning under tension parallel to the basal pole in most grains,were investigated using in-situ neutron diffraction and the EVPSC-TDT model.Neutron diffraction was used to quantitatively track grain-level lattice strains and diffraction intensity changes(related to mechanical twinning)in differently oriented grains of each alloy during cyclic tensile/compressive loadings.These measurements were accurately captured by the model.The stress-strain curves of Mg-1 wt%Zn and Mg-2 wt%Zn alloys show as-expected solid solution strengthening from the addition of Zn compared to pure Mg.The macroscopic yielding and hardening behaviors are explained by alternating slip and twinning modes as calculated by the model.The solid solution's influence on individual deformation modes,including basal〈a〉slip,prismatic〈a〉slip,and extension twinning,was then quantitatively assessed in terms of activity,yielding behavior,and hardening response by combining neutron diffraction results with crystal plasticity predictions.The Mg-1 wt%Zn alloy displays distinct yielding and hardening behavior due to solid solution softening of prismatic〈a〉slip.Additionally,the dependence of extension twinning,in terms of the twinning volume fraction,on Zn content exhibits opposite trends under tensile and compressive loadings. 展开更多
关键词 Magnesium alloy Deformation behavior Solid solution Crystal plasticity modeling Neutron diffraction
在线阅读 下载PDF
A Study on the Modeling and Design of Sigma-Delta Modulator for High Precision ADC
18
作者 Haodong Guo Longyu Li Xia Zhang 《Journal of Electronic Research and Application》 2025年第2期240-246,共7页
With the continuous improvement of signal processing accuracy requirements in modern electronic systems,the demand for high-precision analog-to-digital converters(ADCs)is increasing.Sigma-Delta modulator,as the most i... With the continuous improvement of signal processing accuracy requirements in modern electronic systems,the demand for high-precision analog-to-digital converters(ADCs)is increasing.Sigma-Delta modulator,as the most important component of high-precision ADC,is widely used in high-quality audio,high-precision instrument measurement,and other fields due to its advantages of high precision,strong noise resistance,and low hardware cost.This article designs a discrete structure third-order four-bit high-precision Sigma-Delta modulator through modeling,with an oversampling rate set to 512.Under ideal conditions,the simulation results show that the SDNR reaches 152.7db and the ENOB is 25.24bits.After introducing non-ideal noise,the system performance has decreased.The simulation results show that the SDNR is as high as 124.5db and the ENOB is 20.39bits.This indicates that the design can achieve high-precision conversion and provide assistance for further research in the future. 展开更多
关键词 Analog-to-digital converter Sigma-Delta modulator High precision modeling design
在线阅读 下载PDF
Fine-Grained Point Cloud Intensity Correction Modeling Method Based on Mobile Laser Scanning
19
作者 Xu Liu Qiujie Li +3 位作者 Youlin Xu Musaed Alhussein Khursheed Aurangzeb Fa Zhu 《Computers, Materials & Continua》 2025年第4期575-593,共19页
The correction of Light Detection and Ranging(LiDAR)intensity data is of great significance for enhancing its application value.However,traditional intensity correction methods based on Terrestrial Laser Scanning(TLS)... The correction of Light Detection and Ranging(LiDAR)intensity data is of great significance for enhancing its application value.However,traditional intensity correction methods based on Terrestrial Laser Scanning(TLS)technology rely on manual site setup to collect intensity training data at different distances and incidence angles,which is noisy and limited in sample quantity,restricting the improvement of model accuracy.To overcome this limitation,this study proposes a fine-grained intensity correction modeling method based on Mobile Laser Scanning(MLS)technology.The method utilizes the continuous scanning characteristics of MLS technology to obtain dense point cloud intensity data at various distances and incidence angles.Then,a fine-grained screening strategy is employed to accurately select distance-intensity and incidence angle-intensity modeling samples.Finally,based on these samples,a high-precision intensity correction model is established through polynomial fitting functions.To verify the effectiveness of the proposed method,comparative experiments were designed,and the MLS modeling method was validated against the traditional TLS modeling method on the same test set.The results show that on Test Set 1,where the distance values vary widely(i.e.,0.1–3 m),the intensity consistency after correction using the MLS modeling method reached 7.692 times the original intensity,while the traditional TLS modeling method only increased to 4.630 times the original intensity.On Test Set 2,where the incidence angle values vary widely(i.e.,0○–80○),the MLS modeling method,although with a relatively smaller advantage,still improved the intensity consistency to 3.937 times the original intensity,slightly better than the TLS modeling method’s 3.413 times.These results demonstrate the significant advantage of the modeling method proposed in this study in enhancing the accuracy of intensity correction models. 展开更多
关键词 LIDAR intensity correction mobile laser scanning distance and incidence angle modeling
在线阅读 下载PDF
Understanding characteristic electrochemical impedance spectral data of redox flow batteries with multiphysics modeling
20
作者 Ayoob Alhammadi Abdulmonem Fetyan +2 位作者 Rahmat Agung Susantyoko Ibrahim Mustafa Musbaudeen O.Bamgbopa 《Journal of Energy Chemistry》 2025年第3期329-339,共11页
Electrochemical impedance spectroscopy(EIS)is a robust characterization method to probe prevalent(electro)chemical processes in an electrochemical system.Despite its extensive utilization in fuel cell research,the app... Electrochemical impedance spectroscopy(EIS)is a robust characterization method to probe prevalent(electro)chemical processes in an electrochemical system.Despite its extensive utilization in fuel cell research,the application of EIS in redox flow battery systems particularly for simplified two-electrode full-cell configurations is more limited.Herein we attempt to strengthen the understa nding of cha racteristic EIS data of vanadium redox flow batteries by a combination of equivalent circuit modeling with a validated Multiphysics model analyzed under hydrodynamic conditions in frequency domain.Following a highlight of system linearity and stability concerns for EIS in redox flow batteries,we specifically use our combinatory approach to investigate the effects of different cell component properties on observed galva nostatic EIS spectra and accompanying fitted equivalent circuit element parameters.For the investigated two-electrode full-cell flow battery configuration with the same electrode material on both sides,the EIS spectral data is observed to be dominated by different mass or cha rge transport processes at different ends of the spectrum.Sensitivity analyses of both obtained EIS spectral data and fitted circuit elements parameters show that electrode morphological properties,membrane porosity,and electrolyte inflow conditions predominantly define the EIS spectral data.Insights from the type of analyses performed herein can facilitate flow battery cell/stack diagnostics and targeted performance improvement efforts. 展开更多
关键词 Electrochemical impedance spectroscopy Redox Flow battery Multiphysics modeling Equivalent circuit Full cell
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部