Design method for large stone porous asphalt mixtures (LSPM) was analyzed to avoid the early distresses of semi-rigid asphalt pavements. Based on stone-to-stone skeleton structure concept, processes of LSPM gradatio...Design method for large stone porous asphalt mixtures (LSPM) was analyzed to avoid the early distresses of semi-rigid asphalt pavements. Based on stone-to-stone skeleton structure concept, processes of LSPM gradation design was given. The gradation composite design for LSPM shows that the LSPM nominal maximum size ( N MS) should be larger than 26.5 mm, and the NMS sieve passing percentage should be greater than 50%. Through experiments and calculations on the volume properties of the aggregate, the range of aggregate gradation curve of LSPM was given. In terms of asphalt binder's normalized test results, MAC-70 and SBS modified asphalt were selected as the asphalt binders. The applicability of large scale Marshall Method and gyratory compaction method to shape specimens was investigated. Based on the asphalt mixture performance evaluation, the optimum asphalt content range (3.1%-3.6%), the bitumen film's thickness range (13-16 μm) and the air void range (13%-18 %) were recommended. Finally, LSPM was tested by the laboratory performance tests including rutting resistance test, fatigue test and water stability test. The theoretic and practical analysis shows that LSPM has a good performance on water permeability, rutting resistance and reflection crack resistance.展开更多
By indirect tensile strength (ITS) test and unconfined compressive strength (UCS) test, the influence of various material related parameters, including asphalt foamability, aggregate temperature, mixing moisture c...By indirect tensile strength (ITS) test and unconfined compressive strength (UCS) test, the influence of various material related parameters, including asphalt foamability, aggregate temperature, mixing moisture content (MMC) and foamed asphalt (FA) content, on the mechanical properties of FA mixes was studied. The results indicated that both asphalt foamability and aggregate temperature greatly affected ITS of FA mixes. Too low aggregate temperature was unfavorable for mechanical properties of FA mixes. Foamed index alone was unfit for the evaluation of asphalt foamability. Compared with half-life, expansion ratio had more prominent influence on ITS of FA mixes. MMC had significant impact on the mechanical properties of FA mixes and should be optimized by trial and test in FA mix design. The mechanical properties of FA mix were sensitive to the change of FA content. Compared with the ITS determined with standard Marshall specimens, both the ITS and UCS determined with static compressed specimens by 15 cm diameter were more effective in terms of choosing the optimal asphalt content for FA mixes.展开更多
Four-point flexural fatigue test for Gussasphalt mixture specimen was carried out at a straincontrolled mode system. The results showed that the development of the tested stiffness modulus and phase angle of the mixtu...Four-point flexural fatigue test for Gussasphalt mixture specimen was carried out at a straincontrolled mode system. The results showed that the development of the tested stiffness modulus and phase angle of the mixtures with increasing load cycles exhibited three periods, initial generation, slow development and failure period. The fatigue crack generation zone formed in the third period, in which the macro mechanical properties were signifi cantly decreased. Moreover, we also analyzed the effects of asphalt content and mixing temperature on the fatigue life of the mixture. The results showed that the fi rst period when the specimen's initial stiffness modulus was reduced to 80% accounted for 5%-10% of the total fatigue life; the second period in which the reduction became slow and demonstrated a liner relationship with load cycles occupied 70%-85% of the fatigue life; and the third period was about 5%-10%. The results indicated that the lower the mixing temperature, the longer the fatigue life of Gussasphalt mixture. Besides, the increasing of asphalt content has a minor effect on the fatigue life of Gussasphalt mixture展开更多
ARHM asphalt rubber has been applied in pavement engineering research for more than 20 years in our country. It has been applied and popularized in Beijing-Qinhuangdao Expressway, Jinshi Expressway and other projects ...ARHM asphalt rubber has been applied in pavement engineering research for more than 20 years in our country. It has been applied and popularized in Beijing-Qinhuangdao Expressway, Jinshi Expressway and other projects successively, but its content is relatively low. According to the characteristics that rubber powder can greatly improve the durability of asphalt concrete, the research on the mix proportion of high content (30%) rubber powder asphalt concrete was carried out. It has been verified that it has significantly improved the dynamic stability, low-temperature bending, freeze-thaw splitting and water seepage performance, and has been put into use in the bid section ZT2 of Jingde Expressway, meeting the use requirements of "no minor repair for 15 years and no major repair for 40 years" for the permanent pavement of Jingde Expressway.展开更多
Asphalt extraction test and scanning electron microscopy(SEM) were used for analysis of agglomerations of reclaimed asphalt pavement(RAP) particles. In order to quantify the agglomeration degree of RAP, the fineness m...Asphalt extraction test and scanning electron microscopy(SEM) were used for analysis of agglomerations of reclaimed asphalt pavement(RAP) particles. In order to quantify the agglomeration degree of RAP, the fineness modulus ratio(FMR) and the percentage loss index(PLI) were proposed. In addition, grey correlation analysis was conducted to discuss the relationship between particle agglomerations and RAP size,asphalt content(AC), and surface area. Two indexes indicate that the agglomeration degree increases in general as the RAP size reduces. This can be attributed to that particles are prone to agglomeration in the case of higher AC. Based on the SEM images and the material composition of RAP, the particle agglomeration in RAP can be classified into weak agglomeration and strong agglomeration. Grey correlation analysis shows that AC is the crucial factor affecting the agglomeration degree and RAP variability. In order to produce consistent and stable reclaimed mixtures, disposal measures of RAP are suggested to lower the AC of RAP.展开更多
文摘Design method for large stone porous asphalt mixtures (LSPM) was analyzed to avoid the early distresses of semi-rigid asphalt pavements. Based on stone-to-stone skeleton structure concept, processes of LSPM gradation design was given. The gradation composite design for LSPM shows that the LSPM nominal maximum size ( N MS) should be larger than 26.5 mm, and the NMS sieve passing percentage should be greater than 50%. Through experiments and calculations on the volume properties of the aggregate, the range of aggregate gradation curve of LSPM was given. In terms of asphalt binder's normalized test results, MAC-70 and SBS modified asphalt were selected as the asphalt binders. The applicability of large scale Marshall Method and gyratory compaction method to shape specimens was investigated. Based on the asphalt mixture performance evaluation, the optimum asphalt content range (3.1%-3.6%), the bitumen film's thickness range (13-16 μm) and the air void range (13%-18 %) were recommended. Finally, LSPM was tested by the laboratory performance tests including rutting resistance test, fatigue test and water stability test. The theoretic and practical analysis shows that LSPM has a good performance on water permeability, rutting resistance and reflection crack resistance.
文摘By indirect tensile strength (ITS) test and unconfined compressive strength (UCS) test, the influence of various material related parameters, including asphalt foamability, aggregate temperature, mixing moisture content (MMC) and foamed asphalt (FA) content, on the mechanical properties of FA mixes was studied. The results indicated that both asphalt foamability and aggregate temperature greatly affected ITS of FA mixes. Too low aggregate temperature was unfavorable for mechanical properties of FA mixes. Foamed index alone was unfit for the evaluation of asphalt foamability. Compared with half-life, expansion ratio had more prominent influence on ITS of FA mixes. MMC had significant impact on the mechanical properties of FA mixes and should be optimized by trial and test in FA mix design. The mechanical properties of FA mix were sensitive to the change of FA content. Compared with the ITS determined with standard Marshall specimens, both the ITS and UCS determined with static compressed specimens by 15 cm diameter were more effective in terms of choosing the optimal asphalt content for FA mixes.
基金Funded by the National Natural Science Foundation of China(No.51202214)
文摘Four-point flexural fatigue test for Gussasphalt mixture specimen was carried out at a straincontrolled mode system. The results showed that the development of the tested stiffness modulus and phase angle of the mixtures with increasing load cycles exhibited three periods, initial generation, slow development and failure period. The fatigue crack generation zone formed in the third period, in which the macro mechanical properties were signifi cantly decreased. Moreover, we also analyzed the effects of asphalt content and mixing temperature on the fatigue life of the mixture. The results showed that the fi rst period when the specimen's initial stiffness modulus was reduced to 80% accounted for 5%-10% of the total fatigue life; the second period in which the reduction became slow and demonstrated a liner relationship with load cycles occupied 70%-85% of the fatigue life; and the third period was about 5%-10%. The results indicated that the lower the mixing temperature, the longer the fatigue life of Gussasphalt mixture. Besides, the increasing of asphalt content has a minor effect on the fatigue life of Gussasphalt mixture
文摘ARHM asphalt rubber has been applied in pavement engineering research for more than 20 years in our country. It has been applied and popularized in Beijing-Qinhuangdao Expressway, Jinshi Expressway and other projects successively, but its content is relatively low. According to the characteristics that rubber powder can greatly improve the durability of asphalt concrete, the research on the mix proportion of high content (30%) rubber powder asphalt concrete was carried out. It has been verified that it has significantly improved the dynamic stability, low-temperature bending, freeze-thaw splitting and water seepage performance, and has been put into use in the bid section ZT2 of Jingde Expressway, meeting the use requirements of "no minor repair for 15 years and no major repair for 40 years" for the permanent pavement of Jingde Expressway.
基金Funded by the Postgraduate Research and Practice Innovation Program of Jiangsu Province (No.KYCX21_0496)the Fundamental Research Funds for the Central Universities (for student)+1 种基金the Fundamental Research Funds for the Central Universities (No.B210202050)the Scientific Research Project of Jiangsu Communications Holding Co.,Ltd (No.JETC-DLJS-2022-001)。
文摘Asphalt extraction test and scanning electron microscopy(SEM) were used for analysis of agglomerations of reclaimed asphalt pavement(RAP) particles. In order to quantify the agglomeration degree of RAP, the fineness modulus ratio(FMR) and the percentage loss index(PLI) were proposed. In addition, grey correlation analysis was conducted to discuss the relationship between particle agglomerations and RAP size,asphalt content(AC), and surface area. Two indexes indicate that the agglomeration degree increases in general as the RAP size reduces. This can be attributed to that particles are prone to agglomeration in the case of higher AC. Based on the SEM images and the material composition of RAP, the particle agglomeration in RAP can be classified into weak agglomeration and strong agglomeration. Grey correlation analysis shows that AC is the crucial factor affecting the agglomeration degree and RAP variability. In order to produce consistent and stable reclaimed mixtures, disposal measures of RAP are suggested to lower the AC of RAP.