Quanto options allow the buyer to exchange the foreign currency payoff into the domestic currency at a fixed exchange rate. We investigate quanto options with multiple underlying assets valued in different foreign cur...Quanto options allow the buyer to exchange the foreign currency payoff into the domestic currency at a fixed exchange rate. We investigate quanto options with multiple underlying assets valued in different foreign currencies each with a different strike price in the payoff function. We carry out a comparative performance analysis of different stochastic volatility (SV), stochastic correlation (SC), and stochastic exchange rate (SER) models to determine the best combination of these models for Monte Carlo (MC) simulation pricing. In addition, we test the performance of all model variants with constant correlation as a benchmark. We find that a combination of GARCH-Jump SV, Weibull SC, and Ornstein Uhlenbeck (OU) SER performs best. In addition, we analyze different discretization schemes and their results. In our simulations, the Milstein scheme yields the best balance between execution times and lower standard deviations of price estimates. Furthermore, we find that incorporating mean reversion into stochastic correlation and stochastic FX rate modeling is beneficial for MC simulation pricing. We improve the accuracy of our simulations by implementing antithetic variates variance reduction. Finally, we derive the correlation risk parameters Cora and Gora in our framework so that correlation hedging of quanto options can be performed.展开更多
Geomagnetic observatory data are crucial for all branches of geophysics because they can contribute to earthquake research by detecting anomalies in the Earth’s magnetic field.Recently,data records from the Misallat(...Geomagnetic observatory data are crucial for all branches of geophysics because they can contribute to earthquake research by detecting anomalies in the Earth’s magnetic field.Recently,data records from the Misallat(MLT)and Abu Simbel(ABS)Egyptian geomagnetic observatories were processed and found to be of good quality.In this study,Egyptian observatory data were tested during both quiet and disturbed events and compared with data from INTERMAGNET observatories worldwide at different latitudes and within a narrow range of longitudes in both hemispheres.This study investigated the relationships between magnetic field components from Egyptian observatories and those from INTERMAGNET observatories using graphical representations of the X components;Pearson’s correlation for the X,Y,Z,and F components;cross-correlation for the X component;and wavelet coherence for the F component.The results of this study showed a high correlation between Egyptian observatories and all utilized INTERMAGNET stations,except those located at high latitudes,during both quiet and disturbed events.Additionally,the study confirmed the observed consistency between Egyptian observatories and selected INTERMAGNET stations.Therefore,Egyptian observatories can feasibly fill the gap in the Middle East and North Africa.展开更多
BACKGROUND Previous cellular studies have demonstrated that elevated expression of Cx43 promotes the degradation of cyclin E1 and inhibits cell proliferation through ubiquitination.Conversely,reduced expression result...BACKGROUND Previous cellular studies have demonstrated that elevated expression of Cx43 promotes the degradation of cyclin E1 and inhibits cell proliferation through ubiquitination.Conversely,reduced expression results in a loss of this capacity to facilitate cyclin E degradation.The ubiquitination and degradation of cyclin E1 may be associated with phosphorylation at specific sites on the protein,with Cx43 potentially enhancing this process by facilitating the phosphorylation of these critical residues.AIM To investigate the correlation between expression of Cx43,SKP1/Cullin1/F-box(SCF)FBXW7,p-cyclin E1(ser73,thr77,thr395)and clinicopathological indexes in colon cancer.METHODS Expression levels of Cx43,SCF^(FBXW7),p-cyclin E1(ser73,thr77,thr395)in 38 clinical colon cancer samples were detected by immunohistochemistry and were analyzed by statistical methods to discuss their correlations.RESULTS Positive rate of Cx43,SCF^(FBXW7),p-cyclin E1(Ser73),p-cyclin E1(Thr77)and p-cyclin E1(Thr395)in detected samples were 76.32%,76.32%,65.79%,5.26%and 55.26%respectively.Positive expressions of these proteins were not related to the tissue type,degree of tissue differentiation or lymph node metastasis.Cx43 and SCF^(FBXW7)(r=0.749),p-cyclin E1(Ser73)(r=0.667)and p-cyclin E1(Thr395)(r=0.457),SCF^(FBXW7) and p-cyclin E1(Ser73)(r=0.703)and p-cyclin E1(Thr395)(0.415)were correlated in colon cancer(P<0.05),and expressions of the above proteins were positively correlated in colon cancer.CONCLUSION Cx43 may facilitate the phosphorylation of cyclin E1 at the Ser73 and Thr195 sites through its interaction with SCF^(FBXW7),thereby influencing the ubiquitination and degradation of cyclin E1.展开更多
Methane in-situ explosive fracturing technology produces shale debris particles within fracture channels,enabling a self-propping effect that enhances the fracture network conductivity and long-term stability.This stu...Methane in-situ explosive fracturing technology produces shale debris particles within fracture channels,enabling a self-propping effect that enhances the fracture network conductivity and long-term stability.This study employs X-ray computed tomography(CT)and digital volume correlation(DVC)to investigate the microstructural evolution and hydromechanical responses of shale self-propped fracture under varying confining pressures,highlighting the critical role of shale particles in maintaining fracture conductivity.Results indicate that the fracture aperture in the self-propped sample is significantly larger than in the unpropped sample throughout the loading process,with shale particles tending to crush rather than embedded into the matrix,thus maintaining flow pathways.As confining pressure increases,contact areas between fracture surfaces and particles expand,enhancing the system's stability and compressive resistance.Geometric analyses show flow paths becoming increasingly concentrated and branched under high stress.This resulted in a significant reduction in connectivity,restricting fracture permeability and amplifying the nonlinear gas flow behavior.This study introduces a permeability-strain recovery zone and a novel sensitivity parameter m,delineating stress sensitivity boundaries for permeability and normal strain,with m-value increasing with stress,revealing four characteristic regions.These findings offer theoretical support for optimizing fracturing techniques to enhance resource extraction efficiency.展开更多
Background: The use of assisted reproductive technique (ART) is becoming more common in infertility. During ART most patients undergo ovarian stimulation. In this study we study the correlation between ovarian reserve...Background: The use of assisted reproductive technique (ART) is becoming more common in infertility. During ART most patients undergo ovarian stimulation. In this study we study the correlation between ovarian reserve markers: Anti-Mullerian hormone (AMH) and antral follicle count (AFC), and the response to ovarian stimulation at in vitro fertilization (IVF) centres in Douala Cameroon. Methods: This was a hospital based cross-sectional sectional analytic study carried out over a period of 3 years, 4 months at Clinique de l’Aéroport, Clinique Odyssée and Clinique Urogyn. Inclusion criteria were: Female partners of infertile couples undergoing ovarian stimulation for an in vitro fertilization cycle, patients who had both ovaries and had done either AMH, AFC or both before ovarian stimulation. Patients were divided into three groups based on the number of oocytes retrieved: low ovarian response for ≤3 oocytes, normal ovarian response for 4 - 15 oocytes and high ovarian response for >15 oocytes. Data obtained was analyzed by SPSS version 25.0. Results: The ages of participants ranged from 20 - 4 7 years, with a mean age of 34.11 ± 5.11 years. Most of them had secondary infertility (57.9%). The GnRH antagonist protocol was mainly used, and ovulation was triggered using HCG predominantly. On Multivariate analysis, age and history of PCOS were significantly associated with ovarian response in the low and high ovarian response groups, respectively. Conclusion: AMH has a better predictive value than AFC, however, it is less sensitive but more specific than AFC.展开更多
Ten physical and environmental variables collected from an on-the-go soil sensor at two field sites (MF3E and MF11S) in Mississippi, USA, were analyzed to assess soil variability and the interrelationships among the m...Ten physical and environmental variables collected from an on-the-go soil sensor at two field sites (MF3E and MF11S) in Mississippi, USA, were analyzed to assess soil variability and the interrelationships among the measurements. At MF3E, moderate variability was observed in apparent electrical conductivity shallow (ECas), slope, and ECa ratio measurements, with coefficients of variation ranging from 20% to 27%. In contrast, MF11S exhibited higher variability, particularly in ECas and ECad (deep) measurements, which exceeded 30% in their coefficient of variation values, indicating significant differences in soil composition and moisture content. Correlation analysis revealed strong positive relationships between the near-infrared-to-red ratio and red reflectance (r = 0.897***) soil values at MF3E. MF11S demonstrated a strong negative correlation between ECas and ECad readings with the x-coordinate (r ***). Scatter plots and fitted models illustrated the complexity of relationships, with many showing nonlinear trends. These findings emphasize the need for continuous monitoring and advanced modeling to understand the dynamic nature of soil properties and their implications for agricultural practices. Future research should explore the underlying mechanisms driving variability in the soil characteristics to enhance soil management strategies at the study sites.展开更多
Patterns and drivers of species–genetic diversity correlations(SGDCs)have been broadly examined across taxa and ecosystems and greatly deepen our understanding of how biodiversity is maintained.However,few studies ha...Patterns and drivers of species–genetic diversity correlations(SGDCs)have been broadly examined across taxa and ecosystems and greatly deepen our understanding of how biodiversity is maintained.However,few studies have examined the role of canopy structural heterogeneity,which is a defining feature of forests,in shaping SGDCs.Here,we determine what factors contribute toα-andβ-species–genetic diversity correlations(i.e.,α-andβ-SGDCs)in a Chinese subtropical forest.For this purpose,we used neutral molecular markers to assess genetic variation in almost all adult individuals of the dominant tree species,Lithocarpus xylocarpus,across plots in the Ailaoshan National Natural Reserve.We also quantified microhabitat variation by quantifying canopy structure heterogeneity with airborne laser scanning on 201-ha subtropical forest plots.We found that speciesα-diversity was negatively correlated with geneticα-diversity.Canopy structural heterogeneity was positively correlated with speciesα-diversity but negatively correlated with geneticα-diversity.These contrasting effects contributed to the formation of a negativeα-SGDC.Further,we found that canopy structural heterogeneity increases speciesα-diversity and decreases geneticα-diversity by reducing the population size of target species.Speciesβ-diversity,in contrast,was positively correlated with geneticβ-diversity.Differences in canopy structural heterogeneity between plots had non-linear parallel effects on the two levels ofβ-diversity,while geographic distance had a relatively weak effect onβ-SGDC.Our study indicates that canopy structural heterogeneity simultaneously affects plot-level community species diversity and population genetic diversity,and species and genetic turnover across plots,thus drivingα-andβ-SGDCs.展开更多
Bone marrow edema syndrome (BMES), is a rare and self-limiting condition characterized by localized bone pain and transient marrow edema visible on MRI. BMES has been increasingly associated with specific cutaneous ma...Bone marrow edema syndrome (BMES), is a rare and self-limiting condition characterized by localized bone pain and transient marrow edema visible on MRI. BMES has been increasingly associated with specific cutaneous manifestations that may hold diagnostic and prognostic significance. Patients with BMES have reported localized erythema, dermal thickening, and induration overlying the affected joints, which are hypothesized to reflect microvascular compromise and inflammatory processes within the bone and adjacent soft tissues. Dermatologic signs are likely linked to regional hyperemia, venous stasis, and cytokine-mediated inflammation, paralleling the pathophysiological mechanisms underlying intraosseous edema. Elevated intraosseous pressure in BMES may disrupt local perfusion, resulting in ischemia-reperfusion injury and subsequent vascular leakage, which manifests in visible cutaneous changes. Pro-inflammatory mediators, such as interleukin-1β and vascular endothelial growth factor (VEGF), central to BMES pathogenesis, may exacerbate endothelial activation, and dermal involvement. Histopathologic studies of affected skin have revealed perivascular lymphocytic infiltration and increased dermal vascularity, further supporting the theory of a shared ischemic and inflammatory pathway between bone and skin. Although MRI remains the gold standard for BMES diagnosis, recognition of these cutaneous manifestations could expedite orthopedic referral and intervention, especially in cases where imaging is delayed or symptoms are ambiguous. Current treatment options, including bisphosphonates, prostacyclin analogs, and offloading of weight bearing, may benefit from integration with dermatologic strategies to alleviate localized cutaneous symptoms and improve patient comfort. Evaluating the molecular and vascular links between BMES and its cutaneous manifestations provides an opportunity to refine diagnostic protocols and therapeutic approaches, offering a comprehensive understanding of the systemic interplay between dermal and skeletal pathophysiology, and optimizing clinical outcomes for patients affected by BMES.展开更多
For non-stationary complex dynamic systems,a standardized algorithm is developed to compute time correlation functions,addressing the limitations of traditional methods reliant on the stationary assumption.The propose...For non-stationary complex dynamic systems,a standardized algorithm is developed to compute time correlation functions,addressing the limitations of traditional methods reliant on the stationary assumption.The proposed algorithm integrates two-point and multi-point time correlation functions into a unified framework.Further,it is verified by a practical application in complex financial systems,demonstrating its potential in various complex dynamic systems.展开更多
Classical Correlations were founded in 1900 by Karl Pearson and have since been applied as a statistical tool in virtually all sciences. Quantum correlations go back to Albert Einstein et al. in 1935 and Erwin Schr...Classical Correlations were founded in 1900 by Karl Pearson and have since been applied as a statistical tool in virtually all sciences. Quantum correlations go back to Albert Einstein et al. in 1935 and Erwin Schrödinger’s responses shortly after. In this paper, we contrast classical with quantum correlations. We find that classical correlations are weaker than quantum correlations in the CHSH framework. With respect to correlation matrices, the trace of classical correlation matrices is dissimilar to quantum density matrices. However, the off-diagonal terms have equivalent interpretations. We contrast classical dynamic (i.e., time evolving) stochastic correlation with dynamic quantum density matrices and find that the off-diagonal elements, while different in nature, have similar interpretations. So far, due to the laws of quantum physics, no classical correlations are applied to the quantum spectrum. However, conversely, quantum correlations are applied in classical environments such as quantum computing, cryptography, metrology, teleportation, medical imaging, laser technology, the quantum Internet and more.展开更多
Flaxseed lignan macromolecules(FLM)are a class of important secondary metabolites in fl axseed,which have been widely concerned due to their biological and pharmacological properties,especially for their antioxidative...Flaxseed lignan macromolecules(FLM)are a class of important secondary metabolites in fl axseed,which have been widely concerned due to their biological and pharmacological properties,especially for their antioxidative activity.For the composition and structure of FLM,our results confirmed that ferulic acid glycoside(FerAG)was directly ester-linked with herbacetin diglucoside(HDG)or pinoresinol diglucoside(PDG),which might determine the beginning of FLM biosynthesis.Additionally,p-coumaric acid glycoside(CouAG)might determine the end of chain extension during FLM synthesis in fl axseed.FLM exhibited higher antioxidative activity in polar systems,as shown by its superior 1,1-diphenyl-2-picrylhydrazyl(DPPH)free radical scavenging capacity compared to the 2,2’-azinobis(3-ehtylbenzothiazolin-6-sulfnic acid)(ABTS)cation free radical scavenging capacity in non-polar systems.Moreover,the antioxidative activity of FLM was found to be highly dependent on its composition and structure.In particular,it was positively correlated with the number of phenolic hydroxyl groups(longer FLM chains)and inversely related to the steric hindrance at the ends(lower levels of FerAG and CouAG).These fi ndings verifi ed the potential application of FLM in nonpolar systems,particularly in functional food emulsions。展开更多
The rapid development of unmanned aerial vehicle(UAV) swarm, a new type of aerial threat target, has brought great pressure to the air defense early warning system. At present, most of the track correlation algorithms...The rapid development of unmanned aerial vehicle(UAV) swarm, a new type of aerial threat target, has brought great pressure to the air defense early warning system. At present, most of the track correlation algorithms only use part of the target location, speed, and other information for correlation.In this paper, the artificial neural network method is used to establish the corresponding intelligent track correlation model and method according to the characteristics of swarm targets.Precisely, a route correlation method based on convolutional neural networks (CNN) and long short-term memory (LSTM)Neural network is designed. In this model, the CNN is used to extract the formation characteristics of UAV swarm and the spatial position characteristics of single UAV track in the formation,while the LSTM is used to extract the time characteristics of UAV swarm. Experimental results show that compared with the traditional algorithms, the algorithm based on CNN-LSTM neural network can make full use of multiple feature information of the target, and has better robustness and accuracy for swarm targets.展开更多
Low Earth Orbit(LEO)multibeam satellites will be widely used in the next generation of satellite communication systems,whose inter-beam interference will inevitably limit the performance of the whole system.Nonlinear ...Low Earth Orbit(LEO)multibeam satellites will be widely used in the next generation of satellite communication systems,whose inter-beam interference will inevitably limit the performance of the whole system.Nonlinear precoding such as Tomlinson-Harashima precoding(THP)algorithm has been proved to be a promising technology to solve this problem,which has smaller noise amplification effect compared with linear precoding.However,the similarity of different user channels(defined as channel correlation)will degrade the performance of THP algorithm.In this paper,we qualitatively analyze the inter-beam interference in the whole process of LEO satellite over a specific coverage area,and the impact of channel correlation on Signal-to-Noise Ratio(SNR)of receivers when THP is applied.One user grouping algorithm is proposed based on the analysis of channel correlation,which could decrease the number of users with high channel correlation in each precoding group,thus improve the performance of THP.Furthermore,our algorithm is designed under the premise of co-frequency deployment and orthogonal frequency division multiplexing(OFDM),which leads to more users under severe inter-beam interference compared to the existing research on geostationary orbit satellites broadcasting systems.Simulation results show that the proposed user grouping algorithm possesses higher channel capacity and better bit error rate(BER)performance in high SNR conditions relative to existing works.展开更多
With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in th...With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in the field of human reliability analysis(HRA)to evaluate human reliability and assess risk in large complex systems.However,the classical SPAR-H method does not consider the dependencies among performance shaping factors(PSFs),whichmay cause overestimation or underestimation of the risk of the actual situation.To address this issue,this paper proposes a new method to deal with the dependencies among PSFs in SPAR-H based on the Pearson correlation coefficient.First,the dependence between every two PSFs is measured by the Pearson correlation coefficient.Second,the weights of the PSFs are obtained by considering the total dependence degree.Finally,PSFs’multipliers are modified based on the weights of corresponding PSFs,and then used in the calculating of human error probability(HEP).A case study is used to illustrate the procedure and effectiveness of the proposed method.展开更多
AIM:To assess the repeatability,interocular correlation,and agreement of quantitative swept-source optical coherence tomography angiography(OCTA)optic nerve head(ONH)parameters in healthy subjects.METHODS:Thir ty-thre...AIM:To assess the repeatability,interocular correlation,and agreement of quantitative swept-source optical coherence tomography angiography(OCTA)optic nerve head(ONH)parameters in healthy subjects.METHODS:Thir ty-three healthy subjects were enrolled.The ONH of both eyes were imaged four times by a swept-source-OCTA using a 3 mm×3 mm scanning protocol.Images of the radial peripapillary capillary were analyzed by a customized Matlab program,and the vessel density,fractal dimension,and vessel diameter index were measured.The repeatability of the four scans was determined by the intraclass correlation coefficient(ICC).The most well-centered optic disc from the four repeated scans was then selected for the interocular correlation and agreement analysis using the Pearson correlation coefficient,ICC and Bland-Altman plots.RESULTS:All swept-source-OCTA ONH parameters exhibited certain repeatability,with ICC>0.760 and coefficient of variation(CoV)≤7.301%.The obvious interocular correlation was observed for papillary vessel density(ICC=0.857),vessel diameter index(ICC=0.857)and fractal dimension(ICC=0.906),while circumpapillary vessel density exhibited moderate interocular correlation(ICC=0.687).Bland-Altman plots revealed an agreement range of-5.26%to 6.21%for circumpapillary vessel density.CONCLUSION:OCTA ONH parameters demonstrate good repeatability in healthy subjects.The interocular correlations of papillary vessel density,fractal dimension and vessel diameter index are high,but the correlation for circumpapillary vessel density is moderate.展开更多
Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to ...Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to pipeline-riser flow needs evaluation since the flow condition in pipeline-riser is quite different from the original data where they were derived from. In the present study, a comprehensive evaluation of 24prevailing correlation in predicting frictional pressure drop is carried out based on experimentally measured data of air-water and air-oil two-phase flows in pipeline-riser. Experiments are performed in a system having different configuration of pipeline-riser with the inclination of the downcomer varied from-2°to-5°to investigated the effect of the elbow on the frictional pressure drop in the riser. The inlet gas velocity ranges from 0.03 to 6.2 m/s, and liquid velocity varies from 0.02 to 1.3 m/s. A total of885 experimental data points including 782 on air-water flows and 103 on air-oil flows are obtained and used to access the prediction ability of the correlations. Comparison of the predicted results with the measured data indicate that a majority of the investigated correlations under-predict the pressure drop on severe slugging. The result of this study highlights the requirement of new method considering the effect of pipe layout on the frictional pressure drop.展开更多
Fusing hand-based features in multi-modal biometric recognition enhances anti-spoofing capabilities.Additionally,it leverages inter-modal correlation to enhance recognition performance.Concurrently,the robustness and ...Fusing hand-based features in multi-modal biometric recognition enhances anti-spoofing capabilities.Additionally,it leverages inter-modal correlation to enhance recognition performance.Concurrently,the robustness and recognition performance of the system can be enhanced through judiciously leveraging the correlation among multimodal features.Nevertheless,two issues persist in multi-modal feature fusion recognition:Firstly,the enhancement of recognition performance in fusion recognition has not comprehensively considered the inter-modality correlations among distinct modalities.Secondly,during modal fusion,improper weight selection diminishes the salience of crucial modal features,thereby diminishing the overall recognition performance.To address these two issues,we introduce an enhanced DenseNet multimodal recognition network founded on feature-level fusion.The information from the three modalities is fused akin to RGB,and the input network augments the correlation between modes through channel correlation.Within the enhanced DenseNet network,the Efficient Channel Attention Network(ECA-Net)dynamically adjusts the weight of each channel to amplify the salience of crucial information in each modal feature.Depthwise separable convolution markedly reduces the training parameters and further enhances the feature correlation.Experimental evaluations were conducted on four multimodal databases,comprising six unimodal databases,including multispectral palmprint and palm vein databases from the Chinese Academy of Sciences.The Equal Error Rates(EER)values were 0.0149%,0.0150%,0.0099%,and 0.0050%,correspondingly.In comparison to other network methods for palmprint,palm vein,and finger vein fusion recognition,this approach substantially enhances recognition performance,rendering it suitable for high-security environments with practical applicability.The experiments in this article utilized amodest sample database comprising 200 individuals.The subsequent phase involves preparing for the extension of the method to larger databases.展开更多
Rock fracture mechanics and accurate characterization of rock fracture are crucial for understanding a variety of phenomena interested in geological engineering and geoscience.These phenomena range from very large-sca...Rock fracture mechanics and accurate characterization of rock fracture are crucial for understanding a variety of phenomena interested in geological engineering and geoscience.These phenomena range from very large-scale asymmetrical fault structures to the scale of engineering projects and laboratory-scale rock fracture tests.Comprehensive study can involve mechanical modeling,site or post-mortem investigations,and inspection on the point cloud of the source locations in the form of earthquake,microseismicity,or acoustic emission.This study presents a comprehensive data analysis on characterizing the forming of the asymmetrical damage zone around a laboratory mixed-mode rock fracture.We substantiate the presence of asymmetrical damage through qualitative analysis and demonstrate that measurement uncertainties cannot solely explain the observed asymmetry.The implications of this demonstration can be manifold.On a larger scale,it solidifies a mechanical model used for explaining the contribution of aseismic mechanisms to asymmetrical fault structures.On a laboratory scale,it exemplifies an alternative approach to understanding the observational difference between the source location and the in situ or post-mortem inspection on the rock fracture path.The mechanical model and the data analysis can be informative to the interpretations of other engineering practices as well,but may face different types of challenges.展开更多
In nuclear collisions at RHIC energies, an excess of Ω hyperons over ■ is observed, indicating that Ω has a net baryon number despite s and s quarks being produced in pairs. The baryon number in Ω may have been tr...In nuclear collisions at RHIC energies, an excess of Ω hyperons over ■ is observed, indicating that Ω has a net baryon number despite s and s quarks being produced in pairs. The baryon number in Ω may have been transported from the incident nuclei and/or produced in the baryon-pair production of Ω with other types of anti-hyperons such as Ξ. To investigate these two scenarios, we propose to measure the correlations between Ω and K and between Ω and anti-hyperons. We use two versions, the default and string-melting, of a multiphase transport(AMPT) model to illustrate the method for measuring the correlation and to demonstrate the general shape of the correlation. We present the Ω-hadron correlations from simulated Au+Au collisions at ■ =7.7 and 14.6 Ge V and discuss the dependence on the collision energy and on the hadronization scheme in these two AMPT versions. These correlations can be used to explore the mechanism of baryon number transport and the effects of baryon number and strangeness conservation on nuclear collisions.展开更多
The kagome lattice system has been identified as a fertile ground for the emergence of a number of new quantumstates,including superconductivity,quantum spin liquids,and topological electronic states.This has attracte...The kagome lattice system has been identified as a fertile ground for the emergence of a number of new quantumstates,including superconductivity,quantum spin liquids,and topological electronic states.This has attracted significantinterest within the field of condensed matter physics.Here,we present the observation of an anomalous Hall effect in aniron-based kagome antiferromagnet LuFe_(6)Sn_(6),which implies a non-zero Berry curvature in this compound.By means ofextensive magnetic measurements,a high Neel temperature,T_(N)=552 K,and a spin reorientation behavior were identifiedand a simple temperature-field phase diagram was constructed.Furthermore,this compound was found to exhibit a largeSommerfeld coefficient ofγ=87 mJ·mol^(-1)·K^(-2),suggesting the presence of a strong electronic correlation effect.Ourresearch indicates that LuFe_(6)Sn_(6)is an intriguing compound that may exhibit magnetism,strong correlation,and topologicalstates.展开更多
文摘Quanto options allow the buyer to exchange the foreign currency payoff into the domestic currency at a fixed exchange rate. We investigate quanto options with multiple underlying assets valued in different foreign currencies each with a different strike price in the payoff function. We carry out a comparative performance analysis of different stochastic volatility (SV), stochastic correlation (SC), and stochastic exchange rate (SER) models to determine the best combination of these models for Monte Carlo (MC) simulation pricing. In addition, we test the performance of all model variants with constant correlation as a benchmark. We find that a combination of GARCH-Jump SV, Weibull SC, and Ornstein Uhlenbeck (OU) SER performs best. In addition, we analyze different discretization schemes and their results. In our simulations, the Milstein scheme yields the best balance between execution times and lower standard deviations of price estimates. Furthermore, we find that incorporating mean reversion into stochastic correlation and stochastic FX rate modeling is beneficial for MC simulation pricing. We improve the accuracy of our simulations by implementing antithetic variates variance reduction. Finally, we derive the correlation risk parameters Cora and Gora in our framework so that correlation hedging of quanto options can be performed.
文摘Geomagnetic observatory data are crucial for all branches of geophysics because they can contribute to earthquake research by detecting anomalies in the Earth’s magnetic field.Recently,data records from the Misallat(MLT)and Abu Simbel(ABS)Egyptian geomagnetic observatories were processed and found to be of good quality.In this study,Egyptian observatory data were tested during both quiet and disturbed events and compared with data from INTERMAGNET observatories worldwide at different latitudes and within a narrow range of longitudes in both hemispheres.This study investigated the relationships between magnetic field components from Egyptian observatories and those from INTERMAGNET observatories using graphical representations of the X components;Pearson’s correlation for the X,Y,Z,and F components;cross-correlation for the X component;and wavelet coherence for the F component.The results of this study showed a high correlation between Egyptian observatories and all utilized INTERMAGNET stations,except those located at high latitudes,during both quiet and disturbed events.Additionally,the study confirmed the observed consistency between Egyptian observatories and selected INTERMAGNET stations.Therefore,Egyptian observatories can feasibly fill the gap in the Middle East and North Africa.
基金Supported by Innovative Practice Platform for Undergraduate Students,School of Public Health Xiamen University,No.2021001.
文摘BACKGROUND Previous cellular studies have demonstrated that elevated expression of Cx43 promotes the degradation of cyclin E1 and inhibits cell proliferation through ubiquitination.Conversely,reduced expression results in a loss of this capacity to facilitate cyclin E degradation.The ubiquitination and degradation of cyclin E1 may be associated with phosphorylation at specific sites on the protein,with Cx43 potentially enhancing this process by facilitating the phosphorylation of these critical residues.AIM To investigate the correlation between expression of Cx43,SKP1/Cullin1/F-box(SCF)FBXW7,p-cyclin E1(ser73,thr77,thr395)and clinicopathological indexes in colon cancer.METHODS Expression levels of Cx43,SCF^(FBXW7),p-cyclin E1(ser73,thr77,thr395)in 38 clinical colon cancer samples were detected by immunohistochemistry and were analyzed by statistical methods to discuss their correlations.RESULTS Positive rate of Cx43,SCF^(FBXW7),p-cyclin E1(Ser73),p-cyclin E1(Thr77)and p-cyclin E1(Thr395)in detected samples were 76.32%,76.32%,65.79%,5.26%and 55.26%respectively.Positive expressions of these proteins were not related to the tissue type,degree of tissue differentiation or lymph node metastasis.Cx43 and SCF^(FBXW7)(r=0.749),p-cyclin E1(Ser73)(r=0.667)and p-cyclin E1(Thr395)(r=0.457),SCF^(FBXW7) and p-cyclin E1(Ser73)(r=0.703)and p-cyclin E1(Thr395)(0.415)were correlated in colon cancer(P<0.05),and expressions of the above proteins were positively correlated in colon cancer.CONCLUSION Cx43 may facilitate the phosphorylation of cyclin E1 at the Ser73 and Thr195 sites through its interaction with SCF^(FBXW7),thereby influencing the ubiquitination and degradation of cyclin E1.
基金financially supported by the National Key Research and Development Program of China (No.2020YFA0711800)the National Science Fund for Distinguished Young Scholars (No.51925404)+2 种基金the Graduate Innovation Program of China University of Mining and Technology (No.2023WLKXJ149)the Fundamental Research Funds for the Central Universities (No.2023XSCX040)the Postgraduate Research Practice Innovation Program of Jiangsu Province (No.KYCX23_2864)。
文摘Methane in-situ explosive fracturing technology produces shale debris particles within fracture channels,enabling a self-propping effect that enhances the fracture network conductivity and long-term stability.This study employs X-ray computed tomography(CT)and digital volume correlation(DVC)to investigate the microstructural evolution and hydromechanical responses of shale self-propped fracture under varying confining pressures,highlighting the critical role of shale particles in maintaining fracture conductivity.Results indicate that the fracture aperture in the self-propped sample is significantly larger than in the unpropped sample throughout the loading process,with shale particles tending to crush rather than embedded into the matrix,thus maintaining flow pathways.As confining pressure increases,contact areas between fracture surfaces and particles expand,enhancing the system's stability and compressive resistance.Geometric analyses show flow paths becoming increasingly concentrated and branched under high stress.This resulted in a significant reduction in connectivity,restricting fracture permeability and amplifying the nonlinear gas flow behavior.This study introduces a permeability-strain recovery zone and a novel sensitivity parameter m,delineating stress sensitivity boundaries for permeability and normal strain,with m-value increasing with stress,revealing four characteristic regions.These findings offer theoretical support for optimizing fracturing techniques to enhance resource extraction efficiency.
文摘Background: The use of assisted reproductive technique (ART) is becoming more common in infertility. During ART most patients undergo ovarian stimulation. In this study we study the correlation between ovarian reserve markers: Anti-Mullerian hormone (AMH) and antral follicle count (AFC), and the response to ovarian stimulation at in vitro fertilization (IVF) centres in Douala Cameroon. Methods: This was a hospital based cross-sectional sectional analytic study carried out over a period of 3 years, 4 months at Clinique de l’Aéroport, Clinique Odyssée and Clinique Urogyn. Inclusion criteria were: Female partners of infertile couples undergoing ovarian stimulation for an in vitro fertilization cycle, patients who had both ovaries and had done either AMH, AFC or both before ovarian stimulation. Patients were divided into three groups based on the number of oocytes retrieved: low ovarian response for ≤3 oocytes, normal ovarian response for 4 - 15 oocytes and high ovarian response for >15 oocytes. Data obtained was analyzed by SPSS version 25.0. Results: The ages of participants ranged from 20 - 4 7 years, with a mean age of 34.11 ± 5.11 years. Most of them had secondary infertility (57.9%). The GnRH antagonist protocol was mainly used, and ovulation was triggered using HCG predominantly. On Multivariate analysis, age and history of PCOS were significantly associated with ovarian response in the low and high ovarian response groups, respectively. Conclusion: AMH has a better predictive value than AFC, however, it is less sensitive but more specific than AFC.
文摘Ten physical and environmental variables collected from an on-the-go soil sensor at two field sites (MF3E and MF11S) in Mississippi, USA, were analyzed to assess soil variability and the interrelationships among the measurements. At MF3E, moderate variability was observed in apparent electrical conductivity shallow (ECas), slope, and ECa ratio measurements, with coefficients of variation ranging from 20% to 27%. In contrast, MF11S exhibited higher variability, particularly in ECas and ECad (deep) measurements, which exceeded 30% in their coefficient of variation values, indicating significant differences in soil composition and moisture content. Correlation analysis revealed strong positive relationships between the near-infrared-to-red ratio and red reflectance (r = 0.897***) soil values at MF3E. MF11S demonstrated a strong negative correlation between ECas and ECad readings with the x-coordinate (r ***). Scatter plots and fitted models illustrated the complexity of relationships, with many showing nonlinear trends. These findings emphasize the need for continuous monitoring and advanced modeling to understand the dynamic nature of soil properties and their implications for agricultural practices. Future research should explore the underlying mechanisms driving variability in the soil characteristics to enhance soil management strategies at the study sites.
基金funded by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31000000)the Joint Fund of the National Natural Science Foundation of China-Yunnan Province (U1902203)+1 种基金Major Program for Basic Research Project of Yunnan Province (202101BC070002)Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences (151C53KYSB20200019)
文摘Patterns and drivers of species–genetic diversity correlations(SGDCs)have been broadly examined across taxa and ecosystems and greatly deepen our understanding of how biodiversity is maintained.However,few studies have examined the role of canopy structural heterogeneity,which is a defining feature of forests,in shaping SGDCs.Here,we determine what factors contribute toα-andβ-species–genetic diversity correlations(i.e.,α-andβ-SGDCs)in a Chinese subtropical forest.For this purpose,we used neutral molecular markers to assess genetic variation in almost all adult individuals of the dominant tree species,Lithocarpus xylocarpus,across plots in the Ailaoshan National Natural Reserve.We also quantified microhabitat variation by quantifying canopy structure heterogeneity with airborne laser scanning on 201-ha subtropical forest plots.We found that speciesα-diversity was negatively correlated with geneticα-diversity.Canopy structural heterogeneity was positively correlated with speciesα-diversity but negatively correlated with geneticα-diversity.These contrasting effects contributed to the formation of a negativeα-SGDC.Further,we found that canopy structural heterogeneity increases speciesα-diversity and decreases geneticα-diversity by reducing the population size of target species.Speciesβ-diversity,in contrast,was positively correlated with geneticβ-diversity.Differences in canopy structural heterogeneity between plots had non-linear parallel effects on the two levels ofβ-diversity,while geographic distance had a relatively weak effect onβ-SGDC.Our study indicates that canopy structural heterogeneity simultaneously affects plot-level community species diversity and population genetic diversity,and species and genetic turnover across plots,thus drivingα-andβ-SGDCs.
文摘Bone marrow edema syndrome (BMES), is a rare and self-limiting condition characterized by localized bone pain and transient marrow edema visible on MRI. BMES has been increasingly associated with specific cutaneous manifestations that may hold diagnostic and prognostic significance. Patients with BMES have reported localized erythema, dermal thickening, and induration overlying the affected joints, which are hypothesized to reflect microvascular compromise and inflammatory processes within the bone and adjacent soft tissues. Dermatologic signs are likely linked to regional hyperemia, venous stasis, and cytokine-mediated inflammation, paralleling the pathophysiological mechanisms underlying intraosseous edema. Elevated intraosseous pressure in BMES may disrupt local perfusion, resulting in ischemia-reperfusion injury and subsequent vascular leakage, which manifests in visible cutaneous changes. Pro-inflammatory mediators, such as interleukin-1β and vascular endothelial growth factor (VEGF), central to BMES pathogenesis, may exacerbate endothelial activation, and dermal involvement. Histopathologic studies of affected skin have revealed perivascular lymphocytic infiltration and increased dermal vascularity, further supporting the theory of a shared ischemic and inflammatory pathway between bone and skin. Although MRI remains the gold standard for BMES diagnosis, recognition of these cutaneous manifestations could expedite orthopedic referral and intervention, especially in cases where imaging is delayed or symptoms are ambiguous. Current treatment options, including bisphosphonates, prostacyclin analogs, and offloading of weight bearing, may benefit from integration with dermatologic strategies to alleviate localized cutaneous symptoms and improve patient comfort. Evaluating the molecular and vascular links between BMES and its cutaneous manifestations provides an opportunity to refine diagnostic protocols and therapeutic approaches, offering a comprehensive understanding of the systemic interplay between dermal and skeletal pathophysiology, and optimizing clinical outcomes for patients affected by BMES.
基金Project supported by the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation(Grant No.GZC20231050)the National Natural Science Foundation of China(Grant Nos.12175193 and 11905183)the 13th Five-year plan for Education Science Funding of Guangdong Province(Grant No.2021GXJK349)。
文摘For non-stationary complex dynamic systems,a standardized algorithm is developed to compute time correlation functions,addressing the limitations of traditional methods reliant on the stationary assumption.The proposed algorithm integrates two-point and multi-point time correlation functions into a unified framework.Further,it is verified by a practical application in complex financial systems,demonstrating its potential in various complex dynamic systems.
文摘Classical Correlations were founded in 1900 by Karl Pearson and have since been applied as a statistical tool in virtually all sciences. Quantum correlations go back to Albert Einstein et al. in 1935 and Erwin Schrödinger’s responses shortly after. In this paper, we contrast classical with quantum correlations. We find that classical correlations are weaker than quantum correlations in the CHSH framework. With respect to correlation matrices, the trace of classical correlation matrices is dissimilar to quantum density matrices. However, the off-diagonal terms have equivalent interpretations. We contrast classical dynamic (i.e., time evolving) stochastic correlation with dynamic quantum density matrices and find that the off-diagonal elements, while different in nature, have similar interpretations. So far, due to the laws of quantum physics, no classical correlations are applied to the quantum spectrum. However, conversely, quantum correlations are applied in classical environments such as quantum computing, cryptography, metrology, teleportation, medical imaging, laser technology, the quantum Internet and more.
基金support from National Natural Science Foundation of China(32072267)supported by China Agriculture Research System of CRAS-14.
文摘Flaxseed lignan macromolecules(FLM)are a class of important secondary metabolites in fl axseed,which have been widely concerned due to their biological and pharmacological properties,especially for their antioxidative activity.For the composition and structure of FLM,our results confirmed that ferulic acid glycoside(FerAG)was directly ester-linked with herbacetin diglucoside(HDG)or pinoresinol diglucoside(PDG),which might determine the beginning of FLM biosynthesis.Additionally,p-coumaric acid glycoside(CouAG)might determine the end of chain extension during FLM synthesis in fl axseed.FLM exhibited higher antioxidative activity in polar systems,as shown by its superior 1,1-diphenyl-2-picrylhydrazyl(DPPH)free radical scavenging capacity compared to the 2,2’-azinobis(3-ehtylbenzothiazolin-6-sulfnic acid)(ABTS)cation free radical scavenging capacity in non-polar systems.Moreover,the antioxidative activity of FLM was found to be highly dependent on its composition and structure.In particular,it was positively correlated with the number of phenolic hydroxyl groups(longer FLM chains)and inversely related to the steric hindrance at the ends(lower levels of FerAG and CouAG).These fi ndings verifi ed the potential application of FLM in nonpolar systems,particularly in functional food emulsions。
文摘The rapid development of unmanned aerial vehicle(UAV) swarm, a new type of aerial threat target, has brought great pressure to the air defense early warning system. At present, most of the track correlation algorithms only use part of the target location, speed, and other information for correlation.In this paper, the artificial neural network method is used to establish the corresponding intelligent track correlation model and method according to the characteristics of swarm targets.Precisely, a route correlation method based on convolutional neural networks (CNN) and long short-term memory (LSTM)Neural network is designed. In this model, the CNN is used to extract the formation characteristics of UAV swarm and the spatial position characteristics of single UAV track in the formation,while the LSTM is used to extract the time characteristics of UAV swarm. Experimental results show that compared with the traditional algorithms, the algorithm based on CNN-LSTM neural network can make full use of multiple feature information of the target, and has better robustness and accuracy for swarm targets.
基金supported by the Key R&D Project of the Ministry of Science and Technology of China(2020YFB1808005)。
文摘Low Earth Orbit(LEO)multibeam satellites will be widely used in the next generation of satellite communication systems,whose inter-beam interference will inevitably limit the performance of the whole system.Nonlinear precoding such as Tomlinson-Harashima precoding(THP)algorithm has been proved to be a promising technology to solve this problem,which has smaller noise amplification effect compared with linear precoding.However,the similarity of different user channels(defined as channel correlation)will degrade the performance of THP algorithm.In this paper,we qualitatively analyze the inter-beam interference in the whole process of LEO satellite over a specific coverage area,and the impact of channel correlation on Signal-to-Noise Ratio(SNR)of receivers when THP is applied.One user grouping algorithm is proposed based on the analysis of channel correlation,which could decrease the number of users with high channel correlation in each precoding group,thus improve the performance of THP.Furthermore,our algorithm is designed under the premise of co-frequency deployment and orthogonal frequency division multiplexing(OFDM),which leads to more users under severe inter-beam interference compared to the existing research on geostationary orbit satellites broadcasting systems.Simulation results show that the proposed user grouping algorithm possesses higher channel capacity and better bit error rate(BER)performance in high SNR conditions relative to existing works.
基金Shanghai Rising-Star Program(Grant No.21QA1403400)Shanghai Sailing Program(Grant No.20YF1414800)Shanghai Key Laboratory of Power Station Automation Technology(Grant No.13DZ2273800).
文摘With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in the field of human reliability analysis(HRA)to evaluate human reliability and assess risk in large complex systems.However,the classical SPAR-H method does not consider the dependencies among performance shaping factors(PSFs),whichmay cause overestimation or underestimation of the risk of the actual situation.To address this issue,this paper proposes a new method to deal with the dependencies among PSFs in SPAR-H based on the Pearson correlation coefficient.First,the dependence between every two PSFs is measured by the Pearson correlation coefficient.Second,the weights of the PSFs are obtained by considering the total dependence degree.Finally,PSFs’multipliers are modified based on the weights of corresponding PSFs,and then used in the calculating of human error probability(HEP).A case study is used to illustrate the procedure and effectiveness of the proposed method.
基金Natural Science Foundation of Guangdong Province(No.2018A0303130306)Shantou Science and Technology Program(No.190917085269835,No.200629165261641).
文摘AIM:To assess the repeatability,interocular correlation,and agreement of quantitative swept-source optical coherence tomography angiography(OCTA)optic nerve head(ONH)parameters in healthy subjects.METHODS:Thir ty-three healthy subjects were enrolled.The ONH of both eyes were imaged four times by a swept-source-OCTA using a 3 mm×3 mm scanning protocol.Images of the radial peripapillary capillary were analyzed by a customized Matlab program,and the vessel density,fractal dimension,and vessel diameter index were measured.The repeatability of the four scans was determined by the intraclass correlation coefficient(ICC).The most well-centered optic disc from the four repeated scans was then selected for the interocular correlation and agreement analysis using the Pearson correlation coefficient,ICC and Bland-Altman plots.RESULTS:All swept-source-OCTA ONH parameters exhibited certain repeatability,with ICC>0.760 and coefficient of variation(CoV)≤7.301%.The obvious interocular correlation was observed for papillary vessel density(ICC=0.857),vessel diameter index(ICC=0.857)and fractal dimension(ICC=0.906),while circumpapillary vessel density exhibited moderate interocular correlation(ICC=0.687).Bland-Altman plots revealed an agreement range of-5.26%to 6.21%for circumpapillary vessel density.CONCLUSION:OCTA ONH parameters demonstrate good repeatability in healthy subjects.The interocular correlations of papillary vessel density,fractal dimension and vessel diameter index are high,but the correlation for circumpapillary vessel density is moderate.
基金the support of the Opening Fund of State Key Laboratory of Multiphase Flow in Power Engineering(SKLMF-KF-2102)。
文摘Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to pipeline-riser flow needs evaluation since the flow condition in pipeline-riser is quite different from the original data where they were derived from. In the present study, a comprehensive evaluation of 24prevailing correlation in predicting frictional pressure drop is carried out based on experimentally measured data of air-water and air-oil two-phase flows in pipeline-riser. Experiments are performed in a system having different configuration of pipeline-riser with the inclination of the downcomer varied from-2°to-5°to investigated the effect of the elbow on the frictional pressure drop in the riser. The inlet gas velocity ranges from 0.03 to 6.2 m/s, and liquid velocity varies from 0.02 to 1.3 m/s. A total of885 experimental data points including 782 on air-water flows and 103 on air-oil flows are obtained and used to access the prediction ability of the correlations. Comparison of the predicted results with the measured data indicate that a majority of the investigated correlations under-predict the pressure drop on severe slugging. The result of this study highlights the requirement of new method considering the effect of pipe layout on the frictional pressure drop.
基金funded by the National Natural Science Foundation of China(61991413)the China Postdoctoral Science Foundation(2019M651142)+1 种基金the Natural Science Foundation of Liaoning Province(2021-KF-12-07)the Natural Science Foundations of Liaoning Province(2023-MS-322).
文摘Fusing hand-based features in multi-modal biometric recognition enhances anti-spoofing capabilities.Additionally,it leverages inter-modal correlation to enhance recognition performance.Concurrently,the robustness and recognition performance of the system can be enhanced through judiciously leveraging the correlation among multimodal features.Nevertheless,two issues persist in multi-modal feature fusion recognition:Firstly,the enhancement of recognition performance in fusion recognition has not comprehensively considered the inter-modality correlations among distinct modalities.Secondly,during modal fusion,improper weight selection diminishes the salience of crucial modal features,thereby diminishing the overall recognition performance.To address these two issues,we introduce an enhanced DenseNet multimodal recognition network founded on feature-level fusion.The information from the three modalities is fused akin to RGB,and the input network augments the correlation between modes through channel correlation.Within the enhanced DenseNet network,the Efficient Channel Attention Network(ECA-Net)dynamically adjusts the weight of each channel to amplify the salience of crucial information in each modal feature.Depthwise separable convolution markedly reduces the training parameters and further enhances the feature correlation.Experimental evaluations were conducted on four multimodal databases,comprising six unimodal databases,including multispectral palmprint and palm vein databases from the Chinese Academy of Sciences.The Equal Error Rates(EER)values were 0.0149%,0.0150%,0.0099%,and 0.0050%,correspondingly.In comparison to other network methods for palmprint,palm vein,and finger vein fusion recognition,this approach substantially enhances recognition performance,rendering it suitable for high-security environments with practical applicability.The experiments in this article utilized amodest sample database comprising 200 individuals.The subsequent phase involves preparing for the extension of the method to larger databases.
文摘Rock fracture mechanics and accurate characterization of rock fracture are crucial for understanding a variety of phenomena interested in geological engineering and geoscience.These phenomena range from very large-scale asymmetrical fault structures to the scale of engineering projects and laboratory-scale rock fracture tests.Comprehensive study can involve mechanical modeling,site or post-mortem investigations,and inspection on the point cloud of the source locations in the form of earthquake,microseismicity,or acoustic emission.This study presents a comprehensive data analysis on characterizing the forming of the asymmetrical damage zone around a laboratory mixed-mode rock fracture.We substantiate the presence of asymmetrical damage through qualitative analysis and demonstrate that measurement uncertainties cannot solely explain the observed asymmetry.The implications of this demonstration can be manifold.On a larger scale,it solidifies a mechanical model used for explaining the contribution of aseismic mechanisms to asymmetrical fault structures.On a laboratory scale,it exemplifies an alternative approach to understanding the observational difference between the source location and the in situ or post-mortem inspection on the rock fracture path.The mechanical model and the data analysis can be informative to the interpretations of other engineering practices as well,but may face different types of challenges.
文摘In nuclear collisions at RHIC energies, an excess of Ω hyperons over ■ is observed, indicating that Ω has a net baryon number despite s and s quarks being produced in pairs. The baryon number in Ω may have been transported from the incident nuclei and/or produced in the baryon-pair production of Ω with other types of anti-hyperons such as Ξ. To investigate these two scenarios, we propose to measure the correlations between Ω and K and between Ω and anti-hyperons. We use two versions, the default and string-melting, of a multiphase transport(AMPT) model to illustrate the method for measuring the correlation and to demonstrate the general shape of the correlation. We present the Ω-hadron correlations from simulated Au+Au collisions at ■ =7.7 and 14.6 Ge V and discuss the dependence on the collision energy and on the hadronization scheme in these two AMPT versions. These correlations can be used to explore the mechanism of baryon number transport and the effects of baryon number and strangeness conservation on nuclear collisions.
基金supported by the National Key Research and Development Program of China(Grant Nos.2022YFA1403400,2019YFA0704900,and 2022YFA1403800)the Fundamental Science Center of the National Natural Science Foundation of China(Grant No.52088101)+4 种基金the National Natural Science Foundation of China(Grant Nos.11974394 and 12174426)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(CAS)(Grant No.XDB33000000)the CAS Project for Young Scientists in Basic Research(Grant No.YSBR-057)the Synergetic Extreme Condition User Facility(Grant No.SECUF)the Scientific Instrument Developing Project of CAS(Grant No.ZDKYYQ20210003).
文摘The kagome lattice system has been identified as a fertile ground for the emergence of a number of new quantumstates,including superconductivity,quantum spin liquids,and topological electronic states.This has attracted significantinterest within the field of condensed matter physics.Here,we present the observation of an anomalous Hall effect in aniron-based kagome antiferromagnet LuFe_(6)Sn_(6),which implies a non-zero Berry curvature in this compound.By means ofextensive magnetic measurements,a high Neel temperature,T_(N)=552 K,and a spin reorientation behavior were identifiedand a simple temperature-field phase diagram was constructed.Furthermore,this compound was found to exhibit a largeSommerfeld coefficient ofγ=87 mJ·mol^(-1)·K^(-2),suggesting the presence of a strong electronic correlation effect.Ourresearch indicates that LuFe_(6)Sn_(6)is an intriguing compound that may exhibit magnetism,strong correlation,and topologicalstates.