A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncer...A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncertainties of renewable energy sources(RESs)is constructed without requiring the full distribution knowledge of the uncertainties.The power balance chance constraint is reformulated within the framework of the distributionally robust optimization(DRO)approach.With the exchange of information and energy flow,each microgrid can achieve its local supply-demand balance.Furthermore,the closed-loop stability and recursive feasibility of the proposed algorithm are proved.The comparative results with other DSMPC methods show that a trade-off between robustness and economy can be achieved.展开更多
To meet the requirements of modern air combat,an integrated fire/flight control(IFFC)system is designed to achieve automatic precision tracking and aiming for armed helicopters and release the pilot from heavy target ...To meet the requirements of modern air combat,an integrated fire/flight control(IFFC)system is designed to achieve automatic precision tracking and aiming for armed helicopters and release the pilot from heavy target burden.Considering the complex dynamic characteristics and the couplings of armed helicopters,an improved automatic attack system is con-structed to integrate the fire control system with the flight con-trol system into a unit.To obtain the optimal command signals,the algorithm is investigated to solve nonconvex optimization problems by the contracting Broyden Fletcher Goldfarb Shanno(C-BFGS)algorithm combined with the trust region method.To address the uncertainties in the automatic attack system,the memory nominal distribution and Wasserstein distance are introduced to accurately characterize the uncertainties,and the dual solvable problem is analyzed by using the duality the-ory,conjugate function,and dual norm.Simulation results verify the practicality and validity of the proposed method in solving the IFFC problem on the premise of satisfactory aiming accu-racy.展开更多
Considering the complexity of plant-wide optimization for large-scale industries, a distributed optimization framework to solve the profit optimization problem in ethylene whole process is proposed. To tackle the dela...Considering the complexity of plant-wide optimization for large-scale industries, a distributed optimization framework to solve the profit optimization problem in ethylene whole process is proposed. To tackle the delays arising from the residence time for materials passing through production units during the process with guaranteed constraint satisfaction, an asynchronous distributed parameter projection algorithm with gradient tracking method is introduced. Besides, the heavy ball momentum and Nesterov momentum are incorporated into the proposed algorithm in order to achieve double acceleration properties. The experimental results show that the proposed asynchronous algorithm can achieve a faster convergence compared with the synchronous algorithm.展开更多
With the development of globalization and artificial intelligence,as well as the outbreak of COVID-19,unmanned vehicles have played an important role in cargo distribution.In order to better analyze the research direc...With the development of globalization and artificial intelligence,as well as the outbreak of COVID-19,unmanned vehicles have played an important role in cargo distribution.In order to better analyze the research directions of unmanned vehicle distribution,this paper summarizes the models and algorithms of unmanned vehicle distribution optimization.The research results show that most of the studies have established the goal of optimizing the total costs or travel time.Many researchers have begun to study multi-objective optimization problems,but there are certain limitations,so some studies convert these problems into single-objective optimization for solving,such as converting time and energy consumption into cost,waiting time into distance,and time delay into penalty cost.With the development of unmanned vehicle distribution technology,in future research,a multi-objective model with the lowest cost,the shortest distance and the best security should be established and solved.Most studies have proposed heuristic algorithms for solving the unmanned vehicle distribution problem,and improved optimization solutions have been obtained.In order to ensure the diversity of solution methods,and give consideration to solution time and solution quality,hybrid methods with other algorithms will be a future research direction,for example,the combination of heuristic algorithm and exact algorithm.With the gradual deepening of research,integrated distribution of multiple types of unmanned equipment will become the focus of future research.展开更多
With the increase in car ownership,traffic noise pollution has increased considerably and is one of the most severe types of noise pollution that affects living standards.Noise reduction by sound barriers is a common ...With the increase in car ownership,traffic noise pollution has increased considerably and is one of the most severe types of noise pollution that affects living standards.Noise reduction by sound barriers is a common protective measure used in this country and abroad.The acoustic performance of a sound barrier is highly dependent on its shape and material.In this paper,a semianalytical meshless Burton-Miller‐type singular boundary method is proposed to analyze the acoustic performance of various shapes of sound barriers,and the distribution of sound‐absorbing materials on the surface of sound barriers is optimized by combining a solid isotropic material with a penalization method.The acoustic effect of the sound‐absorbing material is simplified as the acoustical impedance boundary condition.The objective of optimization is to minimize the sound pressure in a given reference plane.The volume of the sound‐absorbing material is used as a constraint.The density of the nodes covered with the sound‐absorbing material is used as the design variable.The method of moving asymptotes was used to update the design variables.This model completely avoids the mesh discretization process in the finite element method and requires only boundary nodes.In addition,the approach also does not require the singular integral calculation in the boundary element method.The method is illustrated and validated using numerical examples to demonstrate its accuracy and efficiency.展开更多
Regular coronavirus disease 2019(COVID-19)epidemic prevention and control have raised new require-ments that necessitate operation-strategy innovation in urban rail transit.To alleviate increasingly seri-ous congestio...Regular coronavirus disease 2019(COVID-19)epidemic prevention and control have raised new require-ments that necessitate operation-strategy innovation in urban rail transit.To alleviate increasingly seri-ous congestion and further reduce the risk of cross-infection,a novel two-stage distributionally robust optimization(DRO)model is explicitly constructed,in which the probability distribution of stochastic scenarios is only partially known in advance.In the proposed model,the mean-conditional value-at-risk(CVaR)criterion is employed to obtain a tradeoff between the expected number of waiting passen-gers and the risk of congestion on an urban rail transit line.The relationship between the proposed DRO model and the traditional two-stage stochastic programming(SP)model is also depicted.Furthermore,to overcome the obstacle of model solvability resulting from imprecise probability distributions,a discrepancy-based ambiguity set is used to transform the robust counterpart into its computationally tractable form.A hybrid algorithm that combines a local search algorithm with a mixed-integer linear programming(MILP)solver is developed to improve the computational efficiency of large-scale instances.Finally,a series of numerical examples with real-world operation data are executed to validate the pro-posed approaches.展开更多
Energy harvesting has been recognized as a promising technique with which to effectively reduce carbon emis-sions and electricity expenses of base stations.However,renewable energy is inherently stochastic and inter-m...Energy harvesting has been recognized as a promising technique with which to effectively reduce carbon emis-sions and electricity expenses of base stations.However,renewable energy is inherently stochastic and inter-mittent,imposing formidable challenges on reliably satisfying users'time-varying wireless traffic demands.In addition,the probability distribution of the renewable energy or users’wireless traffic demand is not always fully known in practice.In this paper,we minimize the total energy cost of a hybrid-energy-powered cellular network by jointly optimizing the energy sharing among base stations,the battery charging and discharging rates,and the energy purchased from the grid under the constraint of a limited battery size at each base station.In solving the formulated non-convex chance-constrained stochastic optimization problem,a new ambiguity set is built to characterize the uncertainties in the renewable energy and wireless traffic demands according to interval sets of the mean and covariance.Using this ambiguity set,the original optimization problem is transformed into a more tractable second-order cone programming problem by exploiting the distributionally robust optimization approach.Furthermore,a low-complexity distributionally robust chance-constrained energy management algo-rithm,which requires only interval sets of the mean and covariance of stochastic parameters,is proposed.The results of extensive simulation are presented to demonstrate that the proposed algorithm outperforms existing methods in terms of the computational complexity,energy cost,and reliability.展开更多
This paper considers the distributed online optimization(DOO) problem over time-varying unbalanced networks, where gradient information is explicitly unknown. To address this issue, a privacy-preserving distributed on...This paper considers the distributed online optimization(DOO) problem over time-varying unbalanced networks, where gradient information is explicitly unknown. To address this issue, a privacy-preserving distributed online one-point residual feedback(OPRF) optimization algorithm is proposed. This algorithm updates decision variables by leveraging one-point residual feedback to estimate the true gradient information. It can achieve the same performance as the two-point feedback scheme while only requiring a single function value query per iteration. Additionally, it effectively eliminates the effect of time-varying unbalanced graphs by dynamically constructing row stochastic matrices. Furthermore, compared to other distributed optimization algorithms that only consider explicitly unknown cost functions, this paper also addresses the issue of privacy information leakage of nodes. Theoretical analysis demonstrate that the method attains sublinear regret while protecting the privacy information of agents. Finally, numerical experiments on distributed collaborative localization problem and federated learning confirm the effectiveness of the algorithm.展开更多
A distributionally robust model predictive control(DRMPC)scheme is proposed based on neural network(NN)modeling to achieve the trajectory tracking control of robot manipulators with state and control torque constraint...A distributionally robust model predictive control(DRMPC)scheme is proposed based on neural network(NN)modeling to achieve the trajectory tracking control of robot manipulators with state and control torque constraints.First,an NN is used to fit the motion data of robot manipulators for data-driven dynamic modeling,converting it into a linear prediction model through gradients.Then,by statistically analyzing the stochastic characteristics of the NN modeling errors,a distributionally robust model predictive controller is designed based on the chance constraints,and the optimization problem is transformed into a tractable quadratic programming(QP)problem under the distributionally robust optimization(DRO)framework.The recursive feasibility and convergence of the proposed algorithm are proven.Finally,the effectiveness of the proposed algorithm is verified through numerical simulation.展开更多
We are investigating the distributed optimization problem,where a network of nodes works together to minimize a global objective that is a finite sum of their stored local functions.Since nodes exchange optimization p...We are investigating the distributed optimization problem,where a network of nodes works together to minimize a global objective that is a finite sum of their stored local functions.Since nodes exchange optimization parameters through the wireless network,large-scale training models can create communication bottlenecks,resulting in slower training times.To address this issue,CHOCO-SGD was proposed,which allows compressing information with arbitrary precision without reducing the convergence rate for strongly convex objective functions.Nevertheless,most convex functions are not strongly convex(such as logistic regression or Lasso),which raises the question of whether this algorithm can be applied to non-strongly convex functions.In this paper,we provide the first theoretical analysis of the convergence rate of CHOCO-SGD on non-strongly convex objectives.We derive a sufficient condition,which limits the fidelity of compression,to guarantee convergence.Moreover,our analysis demonstrates that within the fidelity threshold,this algorithm can significantly reduce transmission burden while maintaining the same convergence rate order as its no-compression equivalent.Numerical experiments further validate the theoretical findings by demonstrating that CHOCO-SGD improves communication efficiency and keeps the same convergence rate order simultaneously.And experiments also show that the algorithm fails to converge with low compression fidelity and in time-varying topologies.Overall,our study offers valuable insights into the potential applicability of CHOCO-SGD for non-strongly convex objectives.Additionally,we provide practical guidelines for researchers seeking to utilize this algorithm in real-world scenarios.展开更多
This paper introduces a novel fully distributed economic power dispatch(EPD)strategy for distribution networks,integrating dynamic tariffs.A two-layer model is proposed:the first layer comprises the physical power dis...This paper introduces a novel fully distributed economic power dispatch(EPD)strategy for distribution networks,integrating dynamic tariffs.A two-layer model is proposed:the first layer comprises the physical power distribution network,including photovoltaic(PV)sources,wind turbine(WT)generators,energy storage systems(ESS),flexible loads(FLs),and other inflexible loads.The upper layer consists of agents dedicated to communication,calculation,and control tasks.Unlike previous EPD strategies,this approach incorporates dynamic tariffs derived from voltage constraints to ensure compliance with nodal voltage constraints.Addi-tionally,a fast distributed optimization algorithm with an event-triggered communication protocol has been developed to address the EPD problem effectively.Through mathematical and simulation analyses,the proposed algorithm's efficiency and rapid conver-gence capability are demonstrated.展开更多
This paper proposes a new pre-processing technique to separate the most effective features from those that might deteriorate the performance of the machine learning classifiers in terms of computational costs and clas...This paper proposes a new pre-processing technique to separate the most effective features from those that might deteriorate the performance of the machine learning classifiers in terms of computational costs and classification accuracy because of their irrelevance,redundancy,or less information;this pre-processing process is often known as feature selection.This technique is based on adopting a new optimization algorithm known as generalized normal distribution optimization(GNDO)supported by the conversion of the normal distribution to a binary one using the arctangent transfer function to convert the continuous values into binary values.Further,a novel restarting strategy(RS)is proposed to preserve the diversity among the solutions within the population by identifying the solutions that exceed a specific distance from the best-so-far and replace them with the others created using an effective updating scheme.This strategy is integrated with GNDO to propose another binary variant having a high ability to preserve the diversity of the solutions for avoiding becoming stuck in local minima and accelerating convergence,namely improved GNDO(IGNDO).The proposed GNDO and IGNDO algorithms are extensively compared with seven state-of-the-art algorithms to verify their performance on thirteen medical instances taken from the UCI repository.IGNDO is shown to be superior in terms of fitness value and classification accuracy and competitive with the others in terms of the selected features.Since the principal goal in solving the FS problem is to find the appropriate subset of features that maximize classification accuracy,IGNDO is considered the best.展开更多
With the adjustment of the energy structure and the rapid development of commercial complex buildings,building energy systems(BES)are playing an increasingly important role.To fully utilize smart building management t...With the adjustment of the energy structure and the rapid development of commercial complex buildings,building energy systems(BES)are playing an increasingly important role.To fully utilize smart building management techniques for coordinating and optimizing energy systems while limiting carbon emissions,this study proposes a smart building energy scheduling method based on distributionally robust optimization(DRO).First,a framework for day-ahead market interaction between the distribution grid(DG),buildings,and electric vehicles(EVs)is established.Based on the the price elasticity matrix principle,demand side management(DSM)technology is used to model the price-based demand response(PBDR)of building electricity load.Meanwhile,the thermal inertia and thermal load flexibility of the building heating system are utilized to leverage the energy storage capabilities of the heating system.Second,a Wasserstein DRO Stackelberg game model is constructed with the objective of maximizing the benefits for both buildings and EVs.This Wasserstein distributionally robust model is then transformed into a mixed-integer model by combining the Karush–Kuhn–Tucker(KKT)conditions and duality theory.Finally,the optimization effect of temperature load storage characteristics on BES flexible scheduling and the coordination of DRO indicators on the optimization results were verified through simulations.The strategy proposed in this article can reduce the total operating cost of BES by 26.37%,significantly enhancing economic efficiency and achieving electricity and heat substitution,resulting in a smoother load curve.This study provides a theoretical foundation and assurance for optimal daily energy scheduling of BES.展开更多
Multi-agent systems can solve scientific issues related to complex systems that are difficult or impossible for a single agent to solve through mutual collaboration and cooperation optimization.In a multi-agent system...Multi-agent systems can solve scientific issues related to complex systems that are difficult or impossible for a single agent to solve through mutual collaboration and cooperation optimization.In a multi-agent system,agents with a certain degree of autonomy generate complex interactions due to the correlation and coordination,which is manifested as cooperative/competitive behavior.This survey focuses on multi-agent cooperative optimization and cooperative/non-cooperative games.Starting from cooperative optimization,the studies on distributed optimization and federated optimization are summarized.The survey mainly focuses on distributed online optimization and its application in privacy protection,and overviews federated optimization from the perspective of privacy protection me-chanisms.Then,cooperative games and non-cooperative games are introduced to expand the cooperative optimization problems from two aspects of minimizing global costs and minimizing individual costs,respectively.Multi-agent cooperative and non-cooperative behaviors are modeled by games from both static and dynamic aspects,according to whether each player can make decisions based on the information of other players.Finally,future directions for cooperative optimization,cooperative/non-cooperative games,and their applications are discussed.展开更多
In this paper,we consider distributed convex optimization problems on multi-agent networks.We develop and analyze the distributed gradient method which allows each agent to compute its dynamic stepsize by utilizing th...In this paper,we consider distributed convex optimization problems on multi-agent networks.We develop and analyze the distributed gradient method which allows each agent to compute its dynamic stepsize by utilizing the time-varying estimate of the local function value at the global optimal solution.Our approach can be applied to both synchronous and asynchronous communication protocols.Specifically,we propose the distributed subgradient with uncoordinated dynamic stepsizes(DS-UD)algorithm for synchronous protocol and the AsynDGD algorithm for asynchronous protocol.Theoretical analysis shows that the proposed algorithms guarantee that all agents reach a consensus on the solution to the multi-agent optimization problem.Moreover,the proposed approach with dynamic stepsizes eliminates the requirement of diminishing stepsize in existing works.Numerical examples of distributed estimation in sensor networks are provided to illustrate the effectiveness of the proposed approach.展开更多
The coordinated optimization problem of the electricity-gas-heat integrated energy system(IES)has the characteristics of strong coupling,non-convexity,and nonlinearity.The centralized optimization method has a high co...The coordinated optimization problem of the electricity-gas-heat integrated energy system(IES)has the characteristics of strong coupling,non-convexity,and nonlinearity.The centralized optimization method has a high cost of communication and complex modeling.Meanwhile,the traditional numerical iterative solution cannot deal with uncertainty and solution efficiency,which is difficult to apply online.For the coordinated optimization problem of the electricity-gas-heat IES in this study,we constructed a model for the distributed IES with a dynamic distribution factor and transformed the centralized optimization problem into a distributed optimization problem in the multi-agent reinforcement learning environment using multi-agent deep deterministic policy gradient.Introducing the dynamic distribution factor allows the system to consider the impact of changes in real-time supply and demand on system optimization,dynamically coordinating different energy sources for complementary utilization and effectively improving the system economy.Compared with centralized optimization,the distributed model with multiple decision centers can achieve similar results while easing the pressure on system communication.The proposed method considers the dual uncertainty of renewable energy and load in the training.Compared with the traditional iterative solution method,it can better cope with uncertainty and realize real-time decision making of the system,which is conducive to the online application.Finally,we verify the effectiveness of the proposed method using an example of an IES coupled with three energy hub agents.展开更多
The distributed nonconvex optimization problem of minimizing a global cost function formed by a sum of n local cost functions by using local information exchange is considered.This problem is an important component of...The distributed nonconvex optimization problem of minimizing a global cost function formed by a sum of n local cost functions by using local information exchange is considered.This problem is an important component of many machine learning techniques with data parallelism,such as deep learning and federated learning.We propose a distributed primal-dual stochastic gradient descent(SGD)algorithm,suitable for arbitrarily connected communication networks and any smooth(possibly nonconvex)cost functions.We show that the proposed algorithm achieves the linear speedup convergence rate O(1/(√nT))for general nonconvex cost functions and the linear speedup convergence rate O(1/(nT)) when the global cost function satisfies the Polyak-Lojasiewicz(P-L)condition,where T is the total number of iterations.We also show that the output of the proposed algorithm with constant parameters linearly converges to a neighborhood of a global optimum.We demonstrate through numerical experiments the efficiency of our algorithm in comparison with the baseline centralized SGD and recently proposed distributed SGD algorithms.展开更多
This paper considers distributed stochastic optimization,in which a number of agents cooperate to optimize a global objective function through local computations and information exchanges with neighbors over a network...This paper considers distributed stochastic optimization,in which a number of agents cooperate to optimize a global objective function through local computations and information exchanges with neighbors over a network.Stochastic optimization problems are usually tackled by variants of projected stochastic gradient descent.However,projecting a point onto a feasible set is often expensive.The Frank-Wolfe(FW)method has well-documented merits in handling convex constraints,but existing stochastic FW algorithms are basically developed for centralized settings.In this context,the present work puts forth a distributed stochastic Frank-Wolfe solver,by judiciously combining Nesterov's momentum and gradient tracking techniques for stochastic convex and nonconvex optimization over networks.It is shown that the convergence rate of the proposed algorithm is O(k^(-1/2))for convex optimization,and O(1/log_(2)(k))for nonconvex optimization.The efficacy of the algorithm is demonstrated by numerical simulations against a number of competing alternatives.展开更多
This study develops a method for the full-size structural design of blade,involving the optimal layer thickness configuration of the blade to maximize its bending stiffness using a genetic algorithm.Numerical differen...This study develops a method for the full-size structural design of blade,involving the optimal layer thickness configuration of the blade to maximize its bending stiffness using a genetic algorithm.Numerical differentiation is employed to solve the sensitivity of blade modal frequency to the layer thickness of each part of blade.The natural frequencies of first-order flapwise and edgewise modes are selected as the optimal objectives.Based on the modal sensitivity analysis of all design variables,the effect of discretized layer thickness on bending stiffness of the blade is explored,and 14 significant design variables are filtered to drive the structural optimization.The best solution predicts an increase in natural frequencies of first-order flapwise and edgewise blade modes by up to 12%and 10.4%,respectively.The results show that the structural optimization method based on modal sensitivity is more effective to improve the structural performance.展开更多
Virtual power plants can effectively integrate different types of distributed energy resources,which have become a new operation mode with substantial advantages such as high flexibility,adaptability,and economy.This ...Virtual power plants can effectively integrate different types of distributed energy resources,which have become a new operation mode with substantial advantages such as high flexibility,adaptability,and economy.This paper proposes a distributionally robust optimal dispatch approach for virtual power plants to determine an optimal day-ahead dispatch under uncertainties of renewable energy sources.The proposed distributionally robust approach characterizes probability distributions of renewable power output by moments.In this regard,the faults of stochastic optimization and traditional robust optimization can be overcome.Firstly,a second-order cone-based ambiguity set that incorporates the first and second moments of renewable power output is constructed,and a day-ahead two-stage distributionally robust optimization model is proposed for virtual power plants participating in day-ahead electricity markets.Then,an effective solution method based on the affine policy and second-order cone duality theory is employed to reformulate the proposed model into a deterministic mixed-integer second-order cone programming problem,which improves the computational efficiency of the model.Finally,the numerical results demonstrate that the proposed method achieves a better balance between robustness and economy.They also validate that the dispatch strategy of virtual power plants can be adjusted to reduce costs according to the moment information of renewable power output.展开更多
基金Supported by the National Natural Science Foundation of China(No.U24B20156)the National Defense Basic Scientific Research Program of China(No.JCKY2021204B051)the National Laboratory of Space Intelligent Control of China(Nos.HTKJ2023KL502005 and HTKJ2024KL502007)。
文摘A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncertainties of renewable energy sources(RESs)is constructed without requiring the full distribution knowledge of the uncertainties.The power balance chance constraint is reformulated within the framework of the distributionally robust optimization(DRO)approach.With the exchange of information and energy flow,each microgrid can achieve its local supply-demand balance.Furthermore,the closed-loop stability and recursive feasibility of the proposed algorithm are proved.The comparative results with other DSMPC methods show that a trade-off between robustness and economy can be achieved.
基金supported by the National Natural Science Foundation of China(62373187)Forward-looking Layout Special Projects(ILA220591A22).
文摘To meet the requirements of modern air combat,an integrated fire/flight control(IFFC)system is designed to achieve automatic precision tracking and aiming for armed helicopters and release the pilot from heavy target burden.Considering the complex dynamic characteristics and the couplings of armed helicopters,an improved automatic attack system is con-structed to integrate the fire control system with the flight con-trol system into a unit.To obtain the optimal command signals,the algorithm is investigated to solve nonconvex optimization problems by the contracting Broyden Fletcher Goldfarb Shanno(C-BFGS)algorithm combined with the trust region method.To address the uncertainties in the automatic attack system,the memory nominal distribution and Wasserstein distance are introduced to accurately characterize the uncertainties,and the dual solvable problem is analyzed by using the duality the-ory,conjugate function,and dual norm.Simulation results verify the practicality and validity of the proposed method in solving the IFFC problem on the premise of satisfactory aiming accu-racy.
基金supported by National Key Research and Development Program of China(2022YFB3305900)National Natural Science Foundation of China(62394343,62394345)+1 种基金Major Science and Technology Projects of Longmen Laboratory(NO.LMZDXM202206)Shanghai Rising-Star Program under Grant 24QA2706100.
文摘Considering the complexity of plant-wide optimization for large-scale industries, a distributed optimization framework to solve the profit optimization problem in ethylene whole process is proposed. To tackle the delays arising from the residence time for materials passing through production units during the process with guaranteed constraint satisfaction, an asynchronous distributed parameter projection algorithm with gradient tracking method is introduced. Besides, the heavy ball momentum and Nesterov momentum are incorporated into the proposed algorithm in order to achieve double acceleration properties. The experimental results show that the proposed asynchronous algorithm can achieve a faster convergence compared with the synchronous algorithm.
基金supported by the National Key Research and Development Program of China under Grant 2021YFE0203600the National Natural Science Foundation of China(72274024)。
文摘With the development of globalization and artificial intelligence,as well as the outbreak of COVID-19,unmanned vehicles have played an important role in cargo distribution.In order to better analyze the research directions of unmanned vehicle distribution,this paper summarizes the models and algorithms of unmanned vehicle distribution optimization.The research results show that most of the studies have established the goal of optimizing the total costs or travel time.Many researchers have begun to study multi-objective optimization problems,but there are certain limitations,so some studies convert these problems into single-objective optimization for solving,such as converting time and energy consumption into cost,waiting time into distance,and time delay into penalty cost.With the development of unmanned vehicle distribution technology,in future research,a multi-objective model with the lowest cost,the shortest distance and the best security should be established and solved.Most studies have proposed heuristic algorithms for solving the unmanned vehicle distribution problem,and improved optimization solutions have been obtained.In order to ensure the diversity of solution methods,and give consideration to solution time and solution quality,hybrid methods with other algorithms will be a future research direction,for example,the combination of heuristic algorithm and exact algorithm.With the gradual deepening of research,integrated distribution of multiple types of unmanned equipment will become the focus of future research.
基金The Natural Science Foundation of Shandong Province of China,Grant/Award Number:ZR2023YQ005The DAAD-K.C.Wong Postdoctoral Fellowships。
文摘With the increase in car ownership,traffic noise pollution has increased considerably and is one of the most severe types of noise pollution that affects living standards.Noise reduction by sound barriers is a common protective measure used in this country and abroad.The acoustic performance of a sound barrier is highly dependent on its shape and material.In this paper,a semianalytical meshless Burton-Miller‐type singular boundary method is proposed to analyze the acoustic performance of various shapes of sound barriers,and the distribution of sound‐absorbing materials on the surface of sound barriers is optimized by combining a solid isotropic material with a penalization method.The acoustic effect of the sound‐absorbing material is simplified as the acoustical impedance boundary condition.The objective of optimization is to minimize the sound pressure in a given reference plane.The volume of the sound‐absorbing material is used as a constraint.The density of the nodes covered with the sound‐absorbing material is used as the design variable.The method of moving asymptotes was used to update the design variables.This model completely avoids the mesh discretization process in the finite element method and requires only boundary nodes.In addition,the approach also does not require the singular integral calculation in the boundary element method.The method is illustrated and validated using numerical examples to demonstrate its accuracy and efficiency.
基金supported the National Natural Science Foundation of China (71621001, 71825004, and 72001019)the Fundamental Research Funds for Central Universities (2020JBM031 and 2021YJS203)the Research Foundation of State Key Laboratory of Rail Traffic Control and Safety (RCS2020ZT001)
文摘Regular coronavirus disease 2019(COVID-19)epidemic prevention and control have raised new require-ments that necessitate operation-strategy innovation in urban rail transit.To alleviate increasingly seri-ous congestion and further reduce the risk of cross-infection,a novel two-stage distributionally robust optimization(DRO)model is explicitly constructed,in which the probability distribution of stochastic scenarios is only partially known in advance.In the proposed model,the mean-conditional value-at-risk(CVaR)criterion is employed to obtain a tradeoff between the expected number of waiting passen-gers and the risk of congestion on an urban rail transit line.The relationship between the proposed DRO model and the traditional two-stage stochastic programming(SP)model is also depicted.Furthermore,to overcome the obstacle of model solvability resulting from imprecise probability distributions,a discrepancy-based ambiguity set is used to transform the robust counterpart into its computationally tractable form.A hybrid algorithm that combines a local search algorithm with a mixed-integer linear programming(MILP)solver is developed to improve the computational efficiency of large-scale instances.Finally,a series of numerical examples with real-world operation data are executed to validate the pro-posed approaches.
基金supported in part by the National Natural Science Foundation of China under grants 61971080,61901367in part by the Natural Science Foundation of Shaanxi Province under grant 2020JQ-844in part by the open-end fund of the Engineering Research Center of Intelligent Air-ground Integrated Vehicle and Traffic Control(ZNKD2021-001)。
文摘Energy harvesting has been recognized as a promising technique with which to effectively reduce carbon emis-sions and electricity expenses of base stations.However,renewable energy is inherently stochastic and inter-mittent,imposing formidable challenges on reliably satisfying users'time-varying wireless traffic demands.In addition,the probability distribution of the renewable energy or users’wireless traffic demand is not always fully known in practice.In this paper,we minimize the total energy cost of a hybrid-energy-powered cellular network by jointly optimizing the energy sharing among base stations,the battery charging and discharging rates,and the energy purchased from the grid under the constraint of a limited battery size at each base station.In solving the formulated non-convex chance-constrained stochastic optimization problem,a new ambiguity set is built to characterize the uncertainties in the renewable energy and wireless traffic demands according to interval sets of the mean and covariance.Using this ambiguity set,the original optimization problem is transformed into a more tractable second-order cone programming problem by exploiting the distributionally robust optimization approach.Furthermore,a low-complexity distributionally robust chance-constrained energy management algo-rithm,which requires only interval sets of the mean and covariance of stochastic parameters,is proposed.The results of extensive simulation are presented to demonstrate that the proposed algorithm outperforms existing methods in terms of the computational complexity,energy cost,and reliability.
基金supported by the National Natural Science Foundation of China (62033010, U23B2061)Qing Lan Project of Jiangsu Province(R2023Q07)。
文摘This paper considers the distributed online optimization(DOO) problem over time-varying unbalanced networks, where gradient information is explicitly unknown. To address this issue, a privacy-preserving distributed online one-point residual feedback(OPRF) optimization algorithm is proposed. This algorithm updates decision variables by leveraging one-point residual feedback to estimate the true gradient information. It can achieve the same performance as the two-point feedback scheme while only requiring a single function value query per iteration. Additionally, it effectively eliminates the effect of time-varying unbalanced graphs by dynamically constructing row stochastic matrices. Furthermore, compared to other distributed optimization algorithms that only consider explicitly unknown cost functions, this paper also addresses the issue of privacy information leakage of nodes. Theoretical analysis demonstrate that the method attains sublinear regret while protecting the privacy information of agents. Finally, numerical experiments on distributed collaborative localization problem and federated learning confirm the effectiveness of the algorithm.
基金Project supported by the National Natural Science Foundation of China(Nos.62273245 and 62173033)the Sichuan Science and Technology Program of China(No.2024NSFSC1486)the Opening Project of Robotic Satellite Key Laboratory of Sichuan Province of China。
文摘A distributionally robust model predictive control(DRMPC)scheme is proposed based on neural network(NN)modeling to achieve the trajectory tracking control of robot manipulators with state and control torque constraints.First,an NN is used to fit the motion data of robot manipulators for data-driven dynamic modeling,converting it into a linear prediction model through gradients.Then,by statistically analyzing the stochastic characteristics of the NN modeling errors,a distributionally robust model predictive controller is designed based on the chance constraints,and the optimization problem is transformed into a tractable quadratic programming(QP)problem under the distributionally robust optimization(DRO)framework.The recursive feasibility and convergence of the proposed algorithm are proven.Finally,the effectiveness of the proposed algorithm is verified through numerical simulation.
基金supported in part by the Shanghai Natural Science Foundation under the Grant 22ZR1407000.
文摘We are investigating the distributed optimization problem,where a network of nodes works together to minimize a global objective that is a finite sum of their stored local functions.Since nodes exchange optimization parameters through the wireless network,large-scale training models can create communication bottlenecks,resulting in slower training times.To address this issue,CHOCO-SGD was proposed,which allows compressing information with arbitrary precision without reducing the convergence rate for strongly convex objective functions.Nevertheless,most convex functions are not strongly convex(such as logistic regression or Lasso),which raises the question of whether this algorithm can be applied to non-strongly convex functions.In this paper,we provide the first theoretical analysis of the convergence rate of CHOCO-SGD on non-strongly convex objectives.We derive a sufficient condition,which limits the fidelity of compression,to guarantee convergence.Moreover,our analysis demonstrates that within the fidelity threshold,this algorithm can significantly reduce transmission burden while maintaining the same convergence rate order as its no-compression equivalent.Numerical experiments further validate the theoretical findings by demonstrating that CHOCO-SGD improves communication efficiency and keeps the same convergence rate order simultaneously.And experiments also show that the algorithm fails to converge with low compression fidelity and in time-varying topologies.Overall,our study offers valuable insights into the potential applicability of CHOCO-SGD for non-strongly convex objectives.Additionally,we provide practical guidelines for researchers seeking to utilize this algorithm in real-world scenarios.
文摘This paper introduces a novel fully distributed economic power dispatch(EPD)strategy for distribution networks,integrating dynamic tariffs.A two-layer model is proposed:the first layer comprises the physical power distribution network,including photovoltaic(PV)sources,wind turbine(WT)generators,energy storage systems(ESS),flexible loads(FLs),and other inflexible loads.The upper layer consists of agents dedicated to communication,calculation,and control tasks.Unlike previous EPD strategies,this approach incorporates dynamic tariffs derived from voltage constraints to ensure compliance with nodal voltage constraints.Addi-tionally,a fast distributed optimization algorithm with an event-triggered communication protocol has been developed to address the EPD problem effectively.Through mathematical and simulation analyses,the proposed algorithm's efficiency and rapid conver-gence capability are demonstrated.
基金This work has supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.NRF-2021R1A2C1010362)and the Soonchunhyang University Research Fund.
文摘This paper proposes a new pre-processing technique to separate the most effective features from those that might deteriorate the performance of the machine learning classifiers in terms of computational costs and classification accuracy because of their irrelevance,redundancy,or less information;this pre-processing process is often known as feature selection.This technique is based on adopting a new optimization algorithm known as generalized normal distribution optimization(GNDO)supported by the conversion of the normal distribution to a binary one using the arctangent transfer function to convert the continuous values into binary values.Further,a novel restarting strategy(RS)is proposed to preserve the diversity among the solutions within the population by identifying the solutions that exceed a specific distance from the best-so-far and replace them with the others created using an effective updating scheme.This strategy is integrated with GNDO to propose another binary variant having a high ability to preserve the diversity of the solutions for avoiding becoming stuck in local minima and accelerating convergence,namely improved GNDO(IGNDO).The proposed GNDO and IGNDO algorithms are extensively compared with seven state-of-the-art algorithms to verify their performance on thirteen medical instances taken from the UCI repository.IGNDO is shown to be superior in terms of fitness value and classification accuracy and competitive with the others in terms of the selected features.Since the principal goal in solving the FS problem is to find the appropriate subset of features that maximize classification accuracy,IGNDO is considered the best.
基金funded by the National Natural Science Foundation of China(52008014)the Fundamental Research Funds for the Central Universities(JKF-20240037)supported by the“111 Center”and Beihang World TOP University Cooperation Program.
文摘With the adjustment of the energy structure and the rapid development of commercial complex buildings,building energy systems(BES)are playing an increasingly important role.To fully utilize smart building management techniques for coordinating and optimizing energy systems while limiting carbon emissions,this study proposes a smart building energy scheduling method based on distributionally robust optimization(DRO).First,a framework for day-ahead market interaction between the distribution grid(DG),buildings,and electric vehicles(EVs)is established.Based on the the price elasticity matrix principle,demand side management(DSM)technology is used to model the price-based demand response(PBDR)of building electricity load.Meanwhile,the thermal inertia and thermal load flexibility of the building heating system are utilized to leverage the energy storage capabilities of the heating system.Second,a Wasserstein DRO Stackelberg game model is constructed with the objective of maximizing the benefits for both buildings and EVs.This Wasserstein distributionally robust model is then transformed into a mixed-integer model by combining the Karush–Kuhn–Tucker(KKT)conditions and duality theory.Finally,the optimization effect of temperature load storage characteristics on BES flexible scheduling and the coordination of DRO indicators on the optimization results were verified through simulations.The strategy proposed in this article can reduce the total operating cost of BES by 26.37%,significantly enhancing economic efficiency and achieving electricity and heat substitution,resulting in a smoother load curve.This study provides a theoretical foundation and assurance for optimal daily energy scheduling of BES.
基金supported in part by the National Natural Science Foundation of China(Basic Science Center Program:61988101)the Sino-German Center for Research Promotion(M-0066)+2 种基金the International(Regional)Cooperation and Exchange Project(61720106008)the Programme of Introducing Talents of Discipline to Universities(the 111 Project)(B17017)the Program of Shanghai Academic Research Leader(20XD1401300).
文摘Multi-agent systems can solve scientific issues related to complex systems that are difficult or impossible for a single agent to solve through mutual collaboration and cooperation optimization.In a multi-agent system,agents with a certain degree of autonomy generate complex interactions due to the correlation and coordination,which is manifested as cooperative/competitive behavior.This survey focuses on multi-agent cooperative optimization and cooperative/non-cooperative games.Starting from cooperative optimization,the studies on distributed optimization and federated optimization are summarized.The survey mainly focuses on distributed online optimization and its application in privacy protection,and overviews federated optimization from the perspective of privacy protection me-chanisms.Then,cooperative games and non-cooperative games are introduced to expand the cooperative optimization problems from two aspects of minimizing global costs and minimizing individual costs,respectively.Multi-agent cooperative and non-cooperative behaviors are modeled by games from both static and dynamic aspects,according to whether each player can make decisions based on the information of other players.Finally,future directions for cooperative optimization,cooperative/non-cooperative games,and their applications are discussed.
基金supported by the Key Research and Development Project in Guangdong Province(2020B0101050001)the National Science Foundation of China(61973214,61590924,61963030)the Natural Science Foundation of Shanghai(19ZR1476200)。
文摘In this paper,we consider distributed convex optimization problems on multi-agent networks.We develop and analyze the distributed gradient method which allows each agent to compute its dynamic stepsize by utilizing the time-varying estimate of the local function value at the global optimal solution.Our approach can be applied to both synchronous and asynchronous communication protocols.Specifically,we propose the distributed subgradient with uncoordinated dynamic stepsizes(DS-UD)algorithm for synchronous protocol and the AsynDGD algorithm for asynchronous protocol.Theoretical analysis shows that the proposed algorithms guarantee that all agents reach a consensus on the solution to the multi-agent optimization problem.Moreover,the proposed approach with dynamic stepsizes eliminates the requirement of diminishing stepsize in existing works.Numerical examples of distributed estimation in sensor networks are provided to illustrate the effectiveness of the proposed approach.
基金supported by The National Key R&D Program of China(2020YFB0905900):Research on artificial intelligence application of power internet of things.
文摘The coordinated optimization problem of the electricity-gas-heat integrated energy system(IES)has the characteristics of strong coupling,non-convexity,and nonlinearity.The centralized optimization method has a high cost of communication and complex modeling.Meanwhile,the traditional numerical iterative solution cannot deal with uncertainty and solution efficiency,which is difficult to apply online.For the coordinated optimization problem of the electricity-gas-heat IES in this study,we constructed a model for the distributed IES with a dynamic distribution factor and transformed the centralized optimization problem into a distributed optimization problem in the multi-agent reinforcement learning environment using multi-agent deep deterministic policy gradient.Introducing the dynamic distribution factor allows the system to consider the impact of changes in real-time supply and demand on system optimization,dynamically coordinating different energy sources for complementary utilization and effectively improving the system economy.Compared with centralized optimization,the distributed model with multiple decision centers can achieve similar results while easing the pressure on system communication.The proposed method considers the dual uncertainty of renewable energy and load in the training.Compared with the traditional iterative solution method,it can better cope with uncertainty and realize real-time decision making of the system,which is conducive to the online application.Finally,we verify the effectiveness of the proposed method using an example of an IES coupled with three energy hub agents.
基金supported by the Knut and Alice Wallenberg Foundationthe Swedish Foundation for Strategic Research+1 种基金the Swedish Research Councilthe National Natural Science Foundation of China(62133003,61991403,61991404,61991400)。
文摘The distributed nonconvex optimization problem of minimizing a global cost function formed by a sum of n local cost functions by using local information exchange is considered.This problem is an important component of many machine learning techniques with data parallelism,such as deep learning and federated learning.We propose a distributed primal-dual stochastic gradient descent(SGD)algorithm,suitable for arbitrarily connected communication networks and any smooth(possibly nonconvex)cost functions.We show that the proposed algorithm achieves the linear speedup convergence rate O(1/(√nT))for general nonconvex cost functions and the linear speedup convergence rate O(1/(nT)) when the global cost function satisfies the Polyak-Lojasiewicz(P-L)condition,where T is the total number of iterations.We also show that the output of the proposed algorithm with constant parameters linearly converges to a neighborhood of a global optimum.We demonstrate through numerical experiments the efficiency of our algorithm in comparison with the baseline centralized SGD and recently proposed distributed SGD algorithms.
基金supported in part by the National Key R&D Program of China(2021YFB1714800)the National Natural Science Foundation of China(62222303,62073035,62173034,61925303,62088101,61873033)+1 种基金the CAAI-Huawei MindSpore Open Fundthe Chongqing Natural Science Foundation(2021ZX4100027)。
文摘This paper considers distributed stochastic optimization,in which a number of agents cooperate to optimize a global objective function through local computations and information exchanges with neighbors over a network.Stochastic optimization problems are usually tackled by variants of projected stochastic gradient descent.However,projecting a point onto a feasible set is often expensive.The Frank-Wolfe(FW)method has well-documented merits in handling convex constraints,but existing stochastic FW algorithms are basically developed for centralized settings.In this context,the present work puts forth a distributed stochastic Frank-Wolfe solver,by judiciously combining Nesterov's momentum and gradient tracking techniques for stochastic convex and nonconvex optimization over networks.It is shown that the convergence rate of the proposed algorithm is O(k^(-1/2))for convex optimization,and O(1/log_(2)(k))for nonconvex optimization.The efficacy of the algorithm is demonstrated by numerical simulations against a number of competing alternatives.
基金supported by the National Natural Science Foundation of China(Nos.51965034,51565028)the Lanzhou City Innovation and Entrepreneurship Project(No.2018-RC-25)。
文摘This study develops a method for the full-size structural design of blade,involving the optimal layer thickness configuration of the blade to maximize its bending stiffness using a genetic algorithm.Numerical differentiation is employed to solve the sensitivity of blade modal frequency to the layer thickness of each part of blade.The natural frequencies of first-order flapwise and edgewise modes are selected as the optimal objectives.Based on the modal sensitivity analysis of all design variables,the effect of discretized layer thickness on bending stiffness of the blade is explored,and 14 significant design variables are filtered to drive the structural optimization.The best solution predicts an increase in natural frequencies of first-order flapwise and edgewise blade modes by up to 12%and 10.4%,respectively.The results show that the structural optimization method based on modal sensitivity is more effective to improve the structural performance.
基金supported by the Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.,China,under Grant J2020090.
文摘Virtual power plants can effectively integrate different types of distributed energy resources,which have become a new operation mode with substantial advantages such as high flexibility,adaptability,and economy.This paper proposes a distributionally robust optimal dispatch approach for virtual power plants to determine an optimal day-ahead dispatch under uncertainties of renewable energy sources.The proposed distributionally robust approach characterizes probability distributions of renewable power output by moments.In this regard,the faults of stochastic optimization and traditional robust optimization can be overcome.Firstly,a second-order cone-based ambiguity set that incorporates the first and second moments of renewable power output is constructed,and a day-ahead two-stage distributionally robust optimization model is proposed for virtual power plants participating in day-ahead electricity markets.Then,an effective solution method based on the affine policy and second-order cone duality theory is employed to reformulate the proposed model into a deterministic mixed-integer second-order cone programming problem,which improves the computational efficiency of the model.Finally,the numerical results demonstrate that the proposed method achieves a better balance between robustness and economy.They also validate that the dispatch strategy of virtual power plants can be adjusted to reduce costs according to the moment information of renewable power output.