期刊文献+
共找到2,185篇文章
< 1 2 110 >
每页显示 20 50 100
3D slope stability analysis considering strength anisotropy by a microstructure tensor enhanced elasto-plastic finite element method
1
作者 Wencheng Wei Hongxiang Tang +1 位作者 Xiaoyu Song Xiangji Ye 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1664-1684,共21页
This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is e... This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is employed to analyze the stability of 3D anisotropic soil slopes.The accuracy of the proposed method is first verified against the data in the literature.We then simulate the 3D soil slope with a straight slope surface and the convex and concave slope surfaces with a 90turning corner to study the 3D effect on slope stability and the failure mechanism under anisotropy conditions.Based on our numerical results,the end effect significantly impacts the failure mechanism and safety factor.Anisotropy degree notably affects the safety factor,with higher degrees leading to deeper landslides.For concave slopes,they can be approximated by straight slopes with suitable boundary conditions to assess their stability.Furthermore,a case study of the Saint-Alban test embankment A in Quebec,Canada,is provided to demonstrate the applicability of the proposed FE model. 展开更多
关键词 Strength anisotropy Elasto-plastic finite element method(FEM) Three-dimensional(3D)soil slope Gravity increase method(GIM) Stability analysis Case study
在线阅读 下载PDF
A stable implicit nodal integration-based particle finite element method(N-PFEM)for modelling saturated soil dynamics 被引量:1
2
作者 Liang Wang Xue Zhang +1 位作者 Jingjing Meng Qinghua Lei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2172-2183,共12页
In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a gene... In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics. 展开更多
关键词 Particle finite element method Nodal integration Dynamic saturated media Second-order cone programming(SOCP)
在线阅读 下载PDF
THE SUPERCLOSENESS OF THE FINITE ELEMENT METHOD FOR A SINGULARLY PERTURBED CONVECTION-DIFFUSION PROBLEM ON A BAKHVALOV-TYPE MESH IN 2D
3
作者 Chunxiao ZHANG Jin ZHANG 《Acta Mathematica Scientia》 SCIE CSCD 2024年第4期1572-1593,共22页
For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of ... For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of the mesh in the layer adjacent to the transition point,resulting in a suboptimal estimate for convergence.Existing analysis techniques cannot handle these difficulties well.To fill this gap,here a novel interpolation is designed delicately for the smooth part of the solution,bringing about the optimal supercloseness result of almost order 2 under an energy norm for the finite element method.Our theoretical result is uniform in the singular perturbation parameterεand is supported by the numerical experiments. 展开更多
关键词 singularly perturbed CONVECTION-DIFFUSION finite element method SUPERCLOSENESS Bakhvalov-type mesh
在线阅读 下载PDF
A BICUBIC B-SPLINE FINITE ELEMENT METHOD FOR FOURTH-ORDER SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS
4
作者 Fangfang DU Tongjun SUN 《Acta Mathematica Scientia》 SCIE CSCD 2024年第6期2411-2421,共11页
A bicubic B-spline finite element method is proposed to solve optimal control problems governed by fourth-order semilinear parabolic partial differential equations.Its key feature is the selection of bicubic B-splines... A bicubic B-spline finite element method is proposed to solve optimal control problems governed by fourth-order semilinear parabolic partial differential equations.Its key feature is the selection of bicubic B-splines as trial functions to approximate the state and costate variables in two space dimensions.A Crank-Nicolson difference scheme is constructed for time discretization.The resulting numerical solutions belong to C2in space,and the order of the coefficient matrix is low.Moreover,the Bogner-Fox-Schmit element is considered for comparison.Two numerical experiments demonstrate the feasibility and effectiveness of the proposed method. 展开更多
关键词 bicubic B-spline finite element method optimal control problem Bogner-Fox-Schmit element Crank-Nicolson scheme numerical experiment
在线阅读 下载PDF
Semi-analytical finite element method applied for characterizing micropolar fibrous composites
5
作者 J.A.OTERO Y.ESPINOSA-ALMEYDA +1 位作者 R.RODRIGUEZ-RAMOS J.MERODIO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第12期2147-2164,共18页
A semi-analytical finite element method(SAFEM),based on the two-scale asymptotic homogenization method(AHM)and the finite element method(FEM),is implemented to obtain the effective properties of two-phase fiber-reinfo... A semi-analytical finite element method(SAFEM),based on the two-scale asymptotic homogenization method(AHM)and the finite element method(FEM),is implemented to obtain the effective properties of two-phase fiber-reinforced composites(FRCs).The fibers are periodically distributed and unidirectionally aligned in a homogeneous matrix.This framework addresses the static linear elastic micropolar problem through partial differential equations,subject to boundary conditions and perfect interface contact conditions.The mathematical formulation of the local problems and the effective coefficients are presented by the AHM.The local problems obtained from the AHM are solved by the FEM,which is denoted as the SAFEM.The numerical results are provided,and the accuracy of the solutions is analyzed,indicating that the formulas and results obtained with the SAFEM may serve as the reference points for validating the outcomes of experimental and numerical computations. 展开更多
关键词 semi-analytical approach fiber-reinforced composite(FRC) effective property finite element method(FEM) asymptotic homogenization method(AHM) micropolar elasticity
在线阅读 下载PDF
A Deep Learning Approach to Shape Optimization Problems for Flexoelectric Materials Using the Isogeometric Finite Element Method
6
作者 Yu Cheng Yajun Huang +3 位作者 Shuai Li Zhongbin Zhou Xiaohui Yuan Yanming Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1935-1960,共26页
A new approach for flexoelectricmaterial shape optimization is proposed in this study.In this work,a proxymodel based on artificial neural network(ANN)is used to solve the parameter optimization and shape optimization... A new approach for flexoelectricmaterial shape optimization is proposed in this study.In this work,a proxymodel based on artificial neural network(ANN)is used to solve the parameter optimization and shape optimization problems.To improve the fitting ability of the neural network,we use the idea of pre-training to determine the structure of the neural network and combine different optimizers for training.The isogeometric analysis-finite element method(IGA-FEM)is used to discretize the flexural theoretical formulas and obtain samples,which helps ANN to build a proxy model from the model shape to the target value.The effectiveness of the proposed method is verified through two numerical examples of parameter optimization and one numerical example of shape optimization. 展开更多
关键词 Shape optimization deep learning flexoelectric structure finite element method isogeometric
在线阅读 下载PDF
A New Isogeometric Finite Element Method for Analyzing Structures
7
作者 Pan Su Jiaxing Chen +1 位作者 Ronggang Yang Jiawei Xiang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1883-1905,共23页
High-performance finite element research has always been a major focus of finite element method studies.This article introduces isogeometric analysis into the finite element method and proposes a new isogeometric fini... High-performance finite element research has always been a major focus of finite element method studies.This article introduces isogeometric analysis into the finite element method and proposes a new isogeometric finite element method.Firstly,the physical field is approximated by uniform B-spline interpolation,while geometry is represented by non-uniform rational B-spline interpolation.By introducing a transformation matrix,elements of types C^(0)and C^(1)are constructed in the isogeometric finite element method.Subsequently,the corresponding calculation formats for one-dimensional bars,beams,and two-dimensional linear elasticity in the isogeometric finite element method are derived through variational principles and parameter mapping.The proposed method combines element construction techniques of the finite element method with geometric construction techniques of isogeometric analysis,eliminating the need for mesh generation and maintaining flexibility in element construc-tion.Two elements with interpolation characteristics are constructed in the method so that boundary conditions and connections between elements can be processed like the finite element method.Finally,the test results of several examples show that:(1)Under the same degree and element node numbers,the constructed elements are almost consistent with the results obtained by traditional finite element method;(2)For bar problems with large local field variations and beam problems with variable cross-sections,high-degree and multi-nodes elements constructed can achieve high computational accuracy with fewer degrees of freedom than finite element method;(3)The computational efficiency of isogeometric finite element method is higher than finite element method under similar degrees of freedom,while as degrees of freedom increase,the computational efficiency between the two is similar. 展开更多
关键词 finite element method isogeometric analysis uniform B-spline non-uniform rational B-spline beam and bar
在线阅读 下载PDF
The Coercive Property and a Priori Error Estimation of the Finite Element Method for Linearly Distributed Time Order Fractional Telegraph Equation with Restricted Initial Conditions
8
作者 Ebimene James Mamadu Henrietta Ify Ojarikre +3 位作者 Daniel Chinedu Iweobodo Ebikonbo-Owei Anthony Mamadu Jonathan Tsetimi Ignatius Nkonyeasua Njoseh 《American Journal of Computational Mathematics》 2024年第4期381-390,共10页
Finite Element Method (FEM), when applied to solve problems, has faced some challenges over the years, such as time consumption and the complexity of assumptions. In particular, the making of assumptions has had a sig... Finite Element Method (FEM), when applied to solve problems, has faced some challenges over the years, such as time consumption and the complexity of assumptions. In particular, the making of assumptions has had a significant influence on the accuracy of the method, making it mandatory to carry out sensitivity analysis. The sensitivity analysis helps to identify the level of impact the assumptions have on the method. However, sensitivity analysis via FEM can be very challenging. A priori error estimation, an integral part of FEM, is a basic mathematical tool for predicting the accuracy of numerical solutions. By understanding the relationship between the mesh size, the order of basis functions, and the resulting error, practitioners can effectively design and apply FEM to solve complex Partial Differential Equations (PDEs) with confidence in the reliability of their results. Thus, the coercive property and A priori error estimation based on the L1 formula on a mesh in time and the Mamadu-Njoseh basis functions in space are investigated for a linearly distributed time-order fractional telegraph equation with restricted initial conditions. For this purpose, we constructed a mathematical proof of the coercive property for the fully discretized scheme. Also, we stated and proved a cardinal theorem for a priori error estimation of the approximate solution for the fully discretized scheme. We noticed the role of the restricted initial conditions imposed on the solution in the analysis of a priori error estimation. 展开更多
关键词 COERCIVITY finite element method Mamadu-Njoseh Polynomials A Priori Error Estimation Cauchy-Schwarz Inequality Mean Value Theorem
在线阅读 下载PDF
Hermite Finite Element Method for Vibration Problem of Euler-Bernoulli Beam on Viscoelastic Pasternak Foundation
9
作者 Pengfei Ji Zhe Yin 《Engineering(科研)》 2024年第10期337-352,共16页
Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Eul... Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Euler-Bernoulli beam on viscoelastic Pasternak foundation can be used to analyze the deformation and response of buildings under complex geological conditions. In this paper, we use Hermite finite element method to get the numerical approximation scheme for the vibration equation of viscoelastic Pasternak foundation beam. Convergence and error estimation are rigourously established. We prove that the fully discrete scheme has convergence order O(τ2+h4), where τis time step size and his space step size. Finally, we give four numerical examples to verify the validity of theoretical analysis. 展开更多
关键词 Viscoelastic Pasternak Foundation Beam Vibration Equation Hermite finite element method Error Estimation Numerical Simulation
在线阅读 下载PDF
A Full Predictor-Corrector Finite Element Method for the One-Dimensional Heat Equation with Time-Dependent Singularities
10
作者 Jake L. Nkeck 《Journal of Applied Mathematics and Physics》 2024年第4期1364-1382,共19页
The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent ... The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent singularities on the one-dimensional heat equation. The method is based on a Fourier decomposition of the solution and an extraction formula of the coefficients of the singularities coupled with a predictor-corrector algorithm. The method recovers the optimal convergence rate of the finite element method on a quasi-uniform mesh refinement. Numerical results are carried out to show the efficiency of the method. 展开更多
关键词 SINGULARITIES finite element methods Heat Equation Predictor-Corrector Algorithm
在线阅读 下载PDF
Multiscale Finite Element Method for Coupling Analysis of Heterogeneous Magneto-Electro-Elastic Structures in Thermal Environment
11
作者 Xinyue Li Xiaolin Li Hangran Yang 《Journal of Applied Mathematics and Physics》 2024年第9期3099-3113,共15页
Magneto-electro-elastic (MEE) materials, a new type of composite intelligent materials, exhibit excellent multifield coupling effects. Due to the heterogeneity of the materials, it is challenging to use the traditiona... Magneto-electro-elastic (MEE) materials, a new type of composite intelligent materials, exhibit excellent multifield coupling effects. Due to the heterogeneity of the materials, it is challenging to use the traditional finite element method (FEM) for mechanical analysis. Additionally, the MEE materials are often in a complex service environment, especially under the influence of the thermal field with thermoelectric and thermomagnetic effects, which affect its mechanical properties. Therefore, this paper proposes the efficient multiscale computational method for the multifield coupling problem of heterogeneous MEE structures under the thermal environment. The method constructs a multi-physics field with numerical base functions (the displacement, electric potential, and magnetic potential multiscale base functions). It equates a single cell of heterogeneous MEE materials to a macroscopic unit and supplements the macroscopic model with a microscopic model. This allows the problem to be solved directly on a macroscopic scale. Finally, the numerical simulation results demonstrate that compared with the traditional FEM, the multiscale finite element method (MsFEM) can achieve the purpose of ensuring accuracy and reducing the degree of freedom, and significantly improving the calculation efficiency. 展开更多
关键词 Multiscale finite element method MAGNETO-ELECTRO-ELASTIC Multifield Coupling Numerical Base Functions
在线阅读 下载PDF
Gradient Recovery Based Two-Grid Finite Element Method for Parabolic Integro-Differential Optimal Control Problems
12
作者 Miao Yang 《Journal of Applied Mathematics and Physics》 2024年第8期2849-2865,共17页
In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and ... In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and co-state variables, and piecewise constant function is used to approximate control variables. Generally, the optimal conditions for the problem are solved iteratively until the control variable reaches error tolerance. In order to calculate all the variables individually and parallelly, we introduce a gradient recovery based two-grid method. First, we solve the small scaled optimal control problem on coarse grids. Next, we use the gradient recovery technique to recover the gradients of state and co-state variables. Finally, using the recovered variables, we solve the large scaled optimal control problem for all variables independently. Moreover, we estimate priori error for the proposed scheme, and use an example to validate the theoretical results. 展开更多
关键词 Optimal Control Problem Gradient Recovery Two-Grid finite element method
在线阅读 下载PDF
NUMERICAL SIMULATION OF UNSTEADY-STATE UNDEREXPANDED JET USING DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD 被引量:3
13
作者 陈二云 李志刚 +3 位作者 马大为 乐贵高 赵改平 任杰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第2期89-93,共5页
A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underex... A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underexpanded axisymmetric jet. Several flow property distributions along the jet axis, including density, pres- sure and Mach number are obtained and the qualitative flowfield structures of interest are well captured using the proposed method, including shock waves, slipstreams, traveling vortex ring and multiple Mach disks. Two Mach disk locations agree well with computational and experimental measurement results. It indicates that the method is robust and efficient for solving the unsteady-state underexpanded axisymmetric jet. 展开更多
关键词 jets computational fluid dynamics multiple Mach disks vortex ring discontinuous Galerkin finite element method
在线阅读 下载PDF
NONLINEAR BUCKLING ANALYSIS OF TUBING IN DEVIATED WELLS BY FINITE ELEMENT METHOD 被引量:9
14
作者 刘峰 王鑫伟 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第1期36-42,共7页
The equilibrium equations and the functional for tubing buckling in arbitrary straight wells are derived. The entire buckling process of tubing in deviated wells is analyzed for the first time by utilizing the finite ... The equilibrium equations and the functional for tubing buckling in arbitrary straight wells are derived. The entire buckling process of tubing in deviated wells is analyzed for the first time by utilizing the finite element method. The effects of gravity and torques on the buckling are included in the analyses and the calculated results are well compared with existing solutions. It is shown that the buckling only occurs at the lower portion of the tubing where the axial load is the largest, and the contact force of the well, the bending moment of the tubing and the buckling displacement of this portion vary periodically. The buckling spreads upwards from the bit with the increase of axial load. There is no buckling at the upper portion of the tubing where the bending moment is zero. And the contact force of this section increases only slightly with the increase of the axial load. With the increase of the deviation angle, the length of buckling portion and buckling displacement amplitude decrease, the contact force increases with the increase of load at the upper portion and its amplitude decreases at the lower buckling section, the bending moment remains zero at the upper portion and its amplitude decreases at the lower buckling portion. The buckling displacement increases with the increase of the torque, but the increment is very small. 展开更多
关键词 deviated wells drill-tubing BUCKLING non-linearity finite element method
在线阅读 下载PDF
Phase-field modeling of dendritic growth under forced flow based on adaptive finite element method 被引量:2
15
作者 朱昶胜 雷鹏 +1 位作者 肖荣振 冯力 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期241-248,共8页
A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic gr... A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic growth was simulated from undercooled nickel melt under the forced flow. The simulation results show that the asymmetry behavior of the dendritic growth is caused by the forced flow. When the flow velocity is less than the critical value, the asymmetry of dendrite is little influenced by the forced flow. Once the flow velocity reaches or exceeds the critical value, the controlling factor of dendrite growth gradually changes from thermal diffusion to convection. With the increase of the flow velocity, the deflection angle towards upstream direction of the primary dendrite stem becomes larger. The effect of the dendrite growth on the flow field of the melt is apparent. With the increase of the dendrite size, the vortex is present in the downstream regions, and the vortex region is gradually enlarged. Dendrite tips appear to remelt. In addition, the adaptive finite element method can reduce CPU running time by one order of magnitude compared with uniform grid method, and the speed-up ratio is proportional to the size of computational domain. 展开更多
关键词 dendritic growth phase-field model forced flow adaptive finite element method
在线阅读 下载PDF
NUMERICAL INVESTIGATION OF TOROIDAL SHOCK WAVES FOCUSING USING DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD 被引量:2
16
作者 陈二云 赵改平 +1 位作者 卓文涛 杨爱玲 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第1期9-15,共7页
A numerical simulation of the toroidal shock wave focusing in a co-axial cylindrical shock tube is inves- tigated by using discontinuous Galerkin (DG) finite element method to solve the axisymmetric Euler equations.... A numerical simulation of the toroidal shock wave focusing in a co-axial cylindrical shock tube is inves- tigated by using discontinuous Galerkin (DG) finite element method to solve the axisymmetric Euler equations. For validating the numerical method, the shock-tube problem with exact solution is computed, and the computed results agree well with the exact cases. Then, several cases with higher incident Mach numbers varying from 2.0 to 5.0 are simulated. Simulation results show that complicated flow-field structures of toroidal shock wave diffraction, reflection, and focusing in a co-axial cylindrical shock tube can be obtained at different incident Mach numbers and the numerical solutions appear steep gradients near the focusing point, which illustrates the DG method has higher accuracy and better resolution near the discontinuous point. Moreover, the focusing peak pres- sure with different grid scales is compared. 展开更多
关键词 shock wave focusing spherical double Math reflection discontinuous galerkin finite element method
在线阅读 下载PDF
INTERVAL ARITHMETIC AND STATIC INTERVAL FINITE ELEMENT METHOD 被引量:2
17
作者 GUO Shu-xiang(郭书祥) +1 位作者 LU Zhen-zhou(吕震宙) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第12期1390-1396,共7页
When the uncertainties of structures may be bounded in intervals, through some suitable discretization, interval finite element method can be constructed by combining the interval analysis with the traditional finite ... When the uncertainties of structures may be bounded in intervals, through some suitable discretization, interval finite element method can be constructed by combining the interval analysis with the traditional finite element method (FEM). The two parameters, median and deviation, were used to represent the uncertainties of interval variables. Based on the arithmetic rules of intervals, some properties and arithmetic rules of interval variables were demonstrated. Combining the procedure of interval analysis with FEM, a static linear interval finite element method was presented to solve the non-random uncertain structures. ne solving of the characteristic parameters of n-freedom uncertain displacement field of the static governing equation was transformed into 2 n-order linear equations. It is shown by a numerical example that the proposed method is practical and effective. 展开更多
关键词 interval variable interval arithmetic finite element method interval finite element method
在线阅读 下载PDF
Mixed time discontinuous space-time finite element method for convection diffusion equations 被引量:1
18
作者 刘洋 李宏 何斯日古楞 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第12期1579-1586,共8页
A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order... A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order equation is discretized with a space-time finite element method, continuous in space but discontinuous in time. Stability, existence, uniqueness and convergence of the approximate solutions are proved. Numerical results are presented to illustrate efficiency of the proposed method. 展开更多
关键词 convection diffusion equations mixed finite element method time discontinuous space-time finite element method CONVERGENCE
在线阅读 下载PDF
FUZZY ARITHMETIC AND SOLVING OF THE STATIC GOVERNING EQUATIONS OF FUZZY FINITE ELEMENT METHOD 被引量:1
19
作者 郭书祥 吕震宙 冯立富 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2002年第9期1054-1061,共8页
The key component of finite element analysis of structures with fuzzy parameters, which is associated with handling of some fuzzy information and arithmetic relation of fuzzy variables, was the solving of the governin... The key component of finite element analysis of structures with fuzzy parameters, which is associated with handling of some fuzzy information and arithmetic relation of fuzzy variables, was the solving of the governing equations of fuzzy finite element method. Based on a given interval representation of fuzzy numbers, some arithmetic rules of fuzzy numbers and fuzzy variables were developed in terms of the properties of interval arithmetic. According to the rules and by the theory of interval finite element method, procedures for solving the static governing equations of fuzzy finite element method of structures were presented. By the proposed procedure, the possibility distributions of responses of fuzzy structures can be generated in terms of the membership functions of the input fuzzy numbers. It is shown by a numerical example that the computational burden of the presented procedures is low and easy to implement. The effectiveness and usefulness of the presented procedures are also illustrated. 展开更多
关键词 fuzzy variable fuzzy arithmetic fuzzy finite element method interval finite element method
在线阅读 下载PDF
INFINITE ELEMENT METHOD FOR PROBLEMS ON UNBOUNDED AND MULTIPLY CONNECTED DOMAINS 被引量:1
20
作者 应隆安 《Acta Mathematica Scientia》 SCIE CSCD 2001年第4期440-452,共13页
The author studies the infinite element method for the boundary value problems of second order elliptic equations on unbounded and multiply connected domains. The author makes a partition of the domain into infinite n... The author studies the infinite element method for the boundary value problems of second order elliptic equations on unbounded and multiply connected domains. The author makes a partition of the domain into infinite number of elements. Without dividing the domain, as usual, into a bounded one and an exterior one, he derives an initial value problem of an ordinary differential equation for the combined stiffness matrix, then obtains the approximate solution with a small amount of computer work. Numerical examples are given. 展开更多
关键词 finite element method infinite element method unbounded domain multiply connected domain
在线阅读 下载PDF
上一页 1 2 110 下一页 到第
使用帮助 返回顶部