期刊文献+
共找到948篇文章
< 1 2 48 >
每页显示 20 50 100
Parallel Image Processing: Taking Grayscale Conversion Using OpenMP as an Example 被引量:1
1
作者 Bayan AlHumaidan Shahad Alghofaily +2 位作者 Maitha Al Qhahtani Sara Oudah Naya Nagy 《Journal of Computer and Communications》 2024年第2期1-10,共10页
In recent years, the widespread adoption of parallel computing, especially in multi-core processors and high-performance computing environments, ushered in a new era of efficiency and speed. This trend was particularl... In recent years, the widespread adoption of parallel computing, especially in multi-core processors and high-performance computing environments, ushered in a new era of efficiency and speed. This trend was particularly noteworthy in the field of image processing, which witnessed significant advancements. This parallel computing project explored the field of parallel image processing, with a focus on the grayscale conversion of colorful images. Our approach involved integrating OpenMP into our framework for parallelization to execute a critical image processing task: grayscale conversion. By using OpenMP, we strategically enhanced the overall performance of the conversion process by distributing the workload across multiple threads. The primary objectives of our project revolved around optimizing computation time and improving overall efficiency, particularly in the task of grayscale conversion of colorful images. Utilizing OpenMP for concurrent processing across multiple cores significantly reduced execution times through the effective distribution of tasks among these cores. The speedup values for various image sizes highlighted the efficacy of parallel processing, especially for large images. However, a detailed examination revealed a potential decline in parallelization efficiency with an increasing number of cores. This underscored the importance of a carefully optimized parallelization strategy, considering factors like load balancing and minimizing communication overhead. Despite challenges, the overall scalability and efficiency achieved with parallel image processing underscored OpenMP’s effectiveness in accelerating image manipulation tasks. 展开更多
关键词 Parallel Computing image processing OPENMP Parallel Programming High Performance Computing GPU (Graphic processing Unit)
在线阅读 下载PDF
Simulation of Fracture Process of Lightweight Aggregate Concrete Based on Digital Image Processing Technology
2
作者 Safwan Al-sayed Xi Wang Yijiang Peng 《Computers, Materials & Continua》 SCIE EI 2024年第6期4169-4195,共27页
The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is a... The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is also a frontier research topic in the academic field.In this study,the image processing technology is used to establish a micro-structure model of lightweight aggregate concrete.Through the information extraction and processing of the section image of actual light aggregate concrete specimens,the mesostructural model of light aggregate concrete with real aggregate characteristics is established.The numerical simulation of uniaxial tensile test,uniaxial compression test and three-point bending test of lightweight aggregate concrete are carried out using a new finite element method-the base force element method respectively.Firstly,the image processing technology is used to produce beam specimens,uniaxial compression specimens and uniaxial tensile specimens of light aggregate concrete,which can better simulate the aggregate shape and random distribution of real light aggregate concrete.Secondly,the three-point bending test is numerically simulated.Thirdly,the uniaxial compression specimen generated by image processing technology is numerically simulated.Fourth,the uniaxial tensile specimen generated by image processing technology is numerically simulated.The mechanical behavior and damage mode of the specimen during loading were analyzed.The results of numerical simulation are compared and analyzed with those of relevant experiments.The feasibility and correctness of the micromodel established in this study for analyzing the micromechanics of lightweight aggregate concrete materials are verified.Image processing technology has a broad application prospect in the field of concrete mesoscopic damage analysis. 展开更多
关键词 Digital image processing lightweight aggregate concrete mesoscopic model numerical simulation fracture analysis bending beams
在线阅读 下载PDF
A Comprehensive Image Processing Framework for Early Diagnosis of Diabetic Retinopathy
3
作者 Kusum Yadav Yasser Alharbi +6 位作者 Eissa Jaber Alreshidi Abdulrahman Alreshidi Anuj Kumar Jain Anurag Jain Kamal Kumar Sachin Sharma Brij BGupta 《Computers, Materials & Continua》 SCIE EI 2024年第11期2665-2683,共19页
In today’s world,image processing techniques play a crucial role in the prognosis and diagnosis of various diseases due to the development of several precise and accurate methods for medical images.Automated analysis... In today’s world,image processing techniques play a crucial role in the prognosis and diagnosis of various diseases due to the development of several precise and accurate methods for medical images.Automated analysis of medical images is essential for doctors,as manual investigation often leads to inter-observer variability.This research aims to enhance healthcare by enabling the early detection of diabetic retinopathy through an efficient image processing framework.The proposed hybridized method combines Modified Inertia Weight Particle Swarm Optimization(MIWPSO)and Fuzzy C-Means clustering(FCM)algorithms.Traditional FCM does not incorporate spatial neighborhood features,making it highly sensitive to noise,which significantly affects segmentation output.Our method incorporates a modified FCM that includes spatial functions in the fuzzy membership matrix to eliminate noise.The results demonstrate that the proposed FCM-MIWPSO method achieves highly precise and accurate medical image segmentation.Furthermore,segmented images are classified as benign or malignant using the Decision Tree-Based Temporal Association Rule(DT-TAR)Algorithm.Comparative analysis with existing state-of-the-art models indicates that the proposed FCM-MIWPSO segmentation technique achieves a remarkable accuracy of 98.42%on the dataset,highlighting its significant impact on improving diagnostic capabilities in medical imaging. 展开更多
关键词 image processing biological data PSO Fuzzy C-Means(FCM)
在线阅读 下载PDF
Machine Learning-based Identification of Contaminated Images in Light Curve Data Preprocessing
4
作者 Hui Li Rong-Wang Li +1 位作者 Peng Shu Yu-Qiang Li 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第4期287-295,共9页
Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometri... Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometric observations,outliers may exist in the obtained light curves due to various reasons.Therefore,preprocessing is required to remove these outliers to obtain high quality light curves.Through statistical analysis,the reasons leading to outliers can be categorized into two main types:first,the brightness of the object significantly increases due to the passage of a star nearby,referred to as“stellar contamination,”and second,the brightness markedly decreases due to cloudy cover,referred to as“cloudy contamination.”The traditional approach of manually inspecting images for contamination is time-consuming and labor-intensive.However,we propose the utilization of machine learning methods as a substitute.Convolutional Neural Networks and SVMs are employed to identify cases of stellar contamination and cloudy contamination,achieving F1 scores of 1.00 and 0.98 on a test set,respectively.We also explore other machine learning methods such as ResNet-18 and Light Gradient Boosting Machine,then conduct comparative analyses of the results. 展开更多
关键词 techniques:image processing methods:data analysis light pollution
在线阅读 下载PDF
Automated Angle Detection for Industrial Production Lines Using Combined Image Processing Techniques
5
作者 Pawat Chunhachatrachai Chyi-Yeu Lin 《Intelligent Automation & Soft Computing》 2024年第4期599-618,共20页
Angle detection is a crucial aspect of industrial automation,ensuring precise alignment and orientation ofcomponents in manufacturing processes.Despite the widespread application of computer vision in industrialsettin... Angle detection is a crucial aspect of industrial automation,ensuring precise alignment and orientation ofcomponents in manufacturing processes.Despite the widespread application of computer vision in industrialsettings,angle detection remains an underexplored domain,with limited integration into production lines.Thispaper addresses the need for automated angle detection in industrial environments by presenting a methodologythat eliminates training time and higher computation cost on Graphics Processing Unit(GPU)from machinelearning in computer vision(e.g.,Convolutional Neural Networks(CNN)).Our approach leverages advanced imageprocessing techniques and a strategic combination of algorithms,including contour selection,circle regression,polar warp transformation,and outlier detection,to provide an adaptive solution for angle detection.By configuringthe algorithm with a diverse dataset and evaluating its performance across various objects,we demonstrate itsefficacy in achieving reliable results,with an average error of only 0.5 degrees.Notably,this error margin is 3.274times lower than the acceptable threshold.Our study highlights the importance of accurate angle detection inindustrial settings and showcases the reliability of our algorithm in accurately determining angles,thus contributingto improved manufacturing processes. 展开更多
关键词 Angle detection image processing algorithm computer vision machine vision industrial automation
在线阅读 下载PDF
Parallel Technologies with Image Processing Using Inverse Filter
6
作者 Rahaf Alsharhan Areej Muheef +2 位作者 Yasmin Al Ibrahim Afnan Rayyani Yasir Alguwaifli 《Journal of Computer and Communications》 2024年第1期110-119,共10页
Real-time capabilities and computational efficiency are provided by parallel image processing utilizing OpenMP. However, race conditions can affect the accuracy and reliability of the outcomes. This paper highlights t... Real-time capabilities and computational efficiency are provided by parallel image processing utilizing OpenMP. However, race conditions can affect the accuracy and reliability of the outcomes. This paper highlights the importance of addressing race conditions in parallel image processing, specifically focusing on color inverse filtering using OpenMP. We considered three solutions to solve race conditions, each with distinct characteristics: #pragma omp atomic: Protects individual memory operations for fine-grained control. #pragma omp critical: Protects entire code blocks for exclusive access. #pragma omp parallel sections reduction: Employs a reduction clause for safe aggregation of values across threads. Our findings show that the produced images were unaffected by race condition. However, it becomes evident that solving the race conditions in the code makes it significantly faster, especially when it is executed on multiple cores. 展开更多
关键词 PARALLEL PARALLELIZATION image processing Inverse Filtering OPENMP Race Conditions
在线阅读 下载PDF
Research on Image Preprocessing Algorithm for Rail Surface Recognition
7
作者 Jihong Zuo Lili Liu +1 位作者 Chuanyin Yang Yufeng Tang 《Open Journal of Applied Sciences》 2024年第10期2801-2808,共8页
The rail surface status image is affected by the noise in the shooting environment and contains a large amount of interference information, which increases the difficulty of rail surface status identification. In orde... The rail surface status image is affected by the noise in the shooting environment and contains a large amount of interference information, which increases the difficulty of rail surface status identification. In order to solve this problem, a preprocessing method for the rail surface state image is proposed. The preprocessing process mainly includes image graying, image denoising, image geometric correction, image extraction, data amplification, and finally building the rail surface image database. The experimental results show that this method can efficiently complete image processing, facilitate feature extraction of rail surface status images, and improve rail surface status recognition accuracy. 展开更多
关键词 image processing image Graying image Denoising image Database
在线阅读 下载PDF
Novel Feature Extractor Framework in Conjunction with Supervised Three Class-XGBoost Algorithm for Osteosarcoma Detection from Whole Slide Medical Histopathology Images
8
作者 Tanzila Saba Muhammad Mujahid +2 位作者 Shaha Al-Otaibi Noor Ayesha Amjad Rehman Khan 《Computers, Materials & Continua》 2025年第2期3337-3353,共17页
Osteosarcomas are malignant neoplasms derived from undifferentiated osteogenic mesenchymal cells. It causes severe and permanent damage to human tissue and has a high mortality rate. The condition has the capacity to ... Osteosarcomas are malignant neoplasms derived from undifferentiated osteogenic mesenchymal cells. It causes severe and permanent damage to human tissue and has a high mortality rate. The condition has the capacity to occur in any bone;however, it often impacts long bones like the arms and legs. Prompt identification and prompt intervention are essential for augmenting patient longevity. However, the intricate composition and erratic placement of osteosarcoma provide difficulties for clinicians in accurately determining the scope of the afflicted area. There is a pressing requirement for developing an algorithm that can automatically detect bone tumors with tremendous accuracy. Therefore, in this study, we proposed a novel feature extractor framework associated with a supervised three-class XGBoost algorithm for the detection of osteosarcoma in whole slide histopathology images. This method allows for quicker and more effective data analysis. The first step involves preprocessing the imbalanced histopathology dataset, followed by augmentation and balancing utilizing two techniques: SMOTE and ADASYN. Next, a unique feature extraction framework is used to extract features, which are then inputted into the supervised three-class XGBoost algorithm for classification into three categories: non-tumor, viable tumor, and non-viable tumor. The experimental findings indicate that the proposed model exhibits superior efficiency, accuracy, and a more lightweight design in comparison to other current models for osteosarcoma detection. 展开更多
关键词 Medical image processing deep learning healthcare image classification HISTOPATHOLOGY
在线阅读 下载PDF
Deep Convolution Neural Networks for Image-Based Android Malware Classification
9
作者 Amel Ksibi Mohammed Zakariah +1 位作者 Latifah Almuqren Ala Saleh Alluhaidan 《Computers, Materials & Continua》 2025年第3期4093-4116,共24页
The analysis of Android malware shows that this threat is constantly increasing and is a real threat to mobile devices since traditional approaches,such as signature-based detection,are no longer effective due to the ... The analysis of Android malware shows that this threat is constantly increasing and is a real threat to mobile devices since traditional approaches,such as signature-based detection,are no longer effective due to the continuously advancing level of sophistication.To resolve this problem,efficient and flexible malware detection tools are needed.This work examines the possibility of employing deep CNNs to detect Android malware by transforming network traffic into image data representations.Moreover,the dataset used in this study is the CIC-AndMal2017,which contains 20,000 instances of network traffic across five distinct malware categories:a.Trojan,b.Adware,c.Ransomware,d.Spyware,e.Worm.These network traffic features are then converted to image formats for deep learning,which is applied in a CNN framework,including the VGG16 pre-trained model.In addition,our approach yielded high performance,yielding an accuracy of 0.92,accuracy of 99.1%,precision of 98.2%,recall of 99.5%,and F1 score of 98.7%.Subsequent improvements to the classification model through changes within the VGG19 framework improved the classification rate to 99.25%.Through the results obtained,it is clear that CNNs are a very effective way to classify Android malware,providing greater accuracy than conventional techniques.The success of this approach also shows the applicability of deep learning in mobile security along with the direction for the future advancement of the real-time detection system and other deeper learning techniques to counter the increasing number of threats emerging in the future. 展开更多
关键词 Android malware detection deep convolutional neural network(DCNN) image processing CIC-AndMal2017 dataset exploratory data analysis VGG16 model
在线阅读 下载PDF
Microstructure effect of mechanical and cracking behaviors on brittle rocks using image-based fast Fourier transform method
10
作者 Mingyao Li Lei Peng +1 位作者 Dejun Liu Jianping Zuo 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期399-413,共15页
The internal microstructures of rock materials, including mineral heterogeneity and intrinsic microdefects, exert a significant influence on their nonlinear mechanical and cracking behaviors. It is of great significan... The internal microstructures of rock materials, including mineral heterogeneity and intrinsic microdefects, exert a significant influence on their nonlinear mechanical and cracking behaviors. It is of great significance to accurately characterize the actual microstructures and their influence on stress and damage evolution inside the rocks. In this study, an image-based fast Fourier transform (FFT) method is developed for reconstructing the actual rock microstructures by combining it with the digital image processing (DIP) technique. A series of experimental investigations were conducted to acquire information regarding the actual microstructure and the mechanical properties. Based on these experimental evidences, the processed microstructure information, in conjunction with the proposed micromechanical model, is incorporated into the numerical calculation. The proposed image-based FFT method was firstly validated through uniaxial compression tests. Subsequently, it was employed to predict and analyze the influence of microstructure on macroscopic mechanical behaviors, local stress distribution and the internal crack evolution process in brittle rocks. The distribution of feldspar is considerably more heterogeneous and scattered than that of quartz, which results in a greater propensity for the formation of cracks in feldspar. It is observed that initial cracks and new cracks, including intragranular and boundary ones, ultimately coalesce and connect as the primary through cracks, which are predominantly distributed along the boundary of the feldspar. This phenomenon is also predicted by the proposed numerical method. The results indicate that the proposed numerical method provides an effective approach for analyzing, understanding and predicting the nonlinear mechanical and cracking behaviors of brittle rocks by taking into account the actual microstructure characteristics. 展开更多
关键词 Rock microstructure Cracking process Brittle rocks Fast Fourier transform(FFT) Digital image processing(DIP)
在线阅读 下载PDF
Non-cooperative target extraction in complex industrial environment based on image segmentation
11
作者 WU Xiaojun WANG Peng +2 位作者 ZHAO He YU Xianzhe LI Tiancheng 《Journal of Measurement Science and Instrumentation》 2025年第1期119-127,共9页
In complex industrial scenes,it is difficult to acquire high-precision non-cooperative target pose under monocular visual servo control.This paper presents a new method of target extraction and high-precision edge fit... In complex industrial scenes,it is difficult to acquire high-precision non-cooperative target pose under monocular visual servo control.This paper presents a new method of target extraction and high-precision edge fitting for the wheel of the sintering trolley in steel production,which fuses multiple target extraction algorithms adapting to the working environment of the target.Firstly,based on obvious difference between the pixels of the target image and the non-target image in the gray histogram,these pixels were classified and then segmented in intraclass,removing interference factors and remaining the target image.Then,multiple segmentation results were merged and a final target image was obtained after small connected regions were eliminated.In the edge fitting stage,the edge fitting method with best-circumscribed rectangle was proposed to accurately fit the circular target edge.Finally,PnP algorithm was adopted for pose measurement of the target.The experimental results showed that the average estimation error of pose angleγwith respect to the z-axis rotation was 0.2346°,the average measurement error of pose angleαwith respect to the x-axis rotation was 0.1703°,and the average measurement error of pose angle β with respect to the y-axis rotation was 0.2275°.The proposed method has practical application value. 展开更多
关键词 digital image processing industrial environment non-cooperative target pose measurement
在线阅读 下载PDF
An Image Analysis Algorithm for Measuring Flank Wear in Coated End-Mills
12
作者 Vitor F.C.Sousa Jorge Gil +3 位作者 Tiago E.F.Silva Abílio M.P.de Jesus Francisco J.G.Silva João Manuel R.S.Tavares 《Computers, Materials & Continua》 2025年第4期177-199,共23页
The machining process remains relevant for manufacturing high-quality and high-precision parts,which can be found in industries such as aerospace and aeronautical,with many produced by turning,drilling,and milling pro... The machining process remains relevant for manufacturing high-quality and high-precision parts,which can be found in industries such as aerospace and aeronautical,with many produced by turning,drilling,and milling processes.Monitoring and analyzing tool wear during these processes is crucial to assess the tool’s life and optimize the tool’s performance under study;as such,standards detail procedures to measure and assess tool wear for various tools.Measuring wear in machining tools can be time-consuming,as the process is usually manual,requiring human interaction and judgment.In the present work,an automated offline flank wear measurement algorithm was developed in Python.The algorithm measures the flank wear of coated end-mills and slot drills from Scanning Electron Microscopy(SEM)images,according to the ISO 8688 standard,following the same wear measurement procedure.SEM images acquired with different magnifications and tools with varying machining parameters were analyzed using the developed algorithm.The flank wear measurements were then compared to the manually obtained,achieving relative errors for the most common magnifications of around 2.5%.Higher magnifications were also tested,yielding a maximum relative error of 13.4%.The algorithm can measure batches of images quickly on an ordinary personal computer,analyzing and measuring a 10-image batch in around 30 s,a process that would require around 30 min when performed manually by a skilled operator.Therefore,it can be a reliable alternative to measuring flank wear on many tools from SEM images,with the possibility of being adjusted for other wear measurements on different kinds of tools and different image types,for example,on images obtained by optical microscopy. 展开更多
关键词 image processing wear measurement MACHINING
在线阅读 下载PDF
Image processing of weld pool and keyhole in Nd:YAG laser welding of stainless steel based on visual sensing 被引量:3
13
作者 高进强 秦国梁 +3 位作者 杨家林 何建国 张涛 武传松 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第2期423-428,共6页
In order to obtain good welding quality, it is necessary to apply quality control because there are many influencing factors in laser welding process. The key to realize welding quality control is to obtain the qualit... In order to obtain good welding quality, it is necessary to apply quality control because there are many influencing factors in laser welding process. The key to realize welding quality control is to obtain the quality information. Abundant weld quality information is contained in weld pool and keyhole. Aiming at Nd:YAG laser welding of stainless steel, a coaxial visual sensing system was constructed. The images of weld pool and keyhole were obtained. Based on the gray character of weld pool and keyhole in images, an image processing algorithm was designed. The search start point and search criteria of weld pool and keyhole edge were determined respectively. 展开更多
关键词 laser welding KEYHOLE weld pool EDGE image processing algorithm
在线阅读 下载PDF
Real-time image processing and display in object size detection based on VC++ 被引量:2
14
作者 翟亚宇 潘晋孝 +1 位作者 刘宾 陈平 《Journal of Measurement Science and Instrumentation》 CAS 2014年第4期40-45,共6页
Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achie... Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achieve a real-time image pro- cessing for the moving objects. Firstly, the median filtering, gain calibration, image segmentation, image binarization, cor- ner detection and edge fitting are employed to process the images of the moving objects to make the image close to the real object. Then, the processed images are simultaneously displayed on a real-time basis to make it easier to analyze, understand and identify them, and thus it reduces the computation complexity. Finally, human-computer interaction (HCI)-friendly in- terface based on VC ++ is designed to accomplish the digital logic transform, image processing and real-time display of the objects. The experiment shows that the proposed algorithm and software design have better real-time performance and accu- racy which can meet the industrial needs. 展开更多
关键词 size detection real-time image processing and display gain calibration edge fitting
在线阅读 下载PDF
Application of TMS320C80 in Image Processing
15
作者 邓峰 戴擎宇 +2 位作者 杨占昕 何佩琨 毛二可 《Journal of Beijing Institute of Technology》 EI CAS 2000年第2期189-194,共6页
To study the application of TMS320C80 in image processing, an image processing system was designed based on this device, and the task of real time image processing was well accomplished on the hardware platform. TMS3... To study the application of TMS320C80 in image processing, an image processing system was designed based on this device, and the task of real time image processing was well accomplished on the hardware platform. TMS320C80 architecture's high degree of on chip integration and software flexibility will make it widely used in image processing that requires high processing speeds. 展开更多
关键词 TMS320C80 REAL-TIME image processing parallel processing
在线阅读 下载PDF
Automated detection and identification of white-backed planthoppers in paddy fields using image processing 被引量:14
16
作者 YAO Qing CHEN Guo-te +3 位作者 WANG Zheng ZHANG Chao YANG Bao-jun TANG Jian 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第7期1547-1557,共11页
A survey of the population densities of rice planthoppers is important for forecasting decisions and efficient control. Tra- ditional manual surveying of rice planthoppers is time-consuming, fatiguing, and subjective.... A survey of the population densities of rice planthoppers is important for forecasting decisions and efficient control. Tra- ditional manual surveying of rice planthoppers is time-consuming, fatiguing, and subjective. A new three-layer detection method was proposed to detect and identify white-backed planthoppers (WBPHs, Sogatella furcifera (Horvath)) and their developmental stages using image processing. In the first two detection layers, we used an AdaBoost classifier that was trained on a histogram of oriented gradient (HOG) features and a support vector machine (SVM) classifier that was trained on Gabor and Local Binary Pattern (LBP) features to detect WBPHs and remove impurities. We achieved a detection rate of 85.6% and a false detection rate of 10.2%. In the third detection layer, a SVM classifier that was trained on the HOG features was used to identify the different developmental stages of the WBPHs, and we achieved an identification rate of 73.1%, a false identification rate of 23.3%, and a 5.6% false detection rate for the images without WBPHs. The proposed three-layer detection method is feasible and effective for the identification of different developmental stages of planthoppers on rice plants in paddy fields. 展开更多
关键词 white-backed planthopper developmental stage automated detection and identification image processing histogram of oriented gradient features gabor features local binary pattern features
在线阅读 下载PDF
The State-of-the-Art Review on Applications of Intrusive Sensing,Image Processing Techniques,and Machine Learning Methods in Pavement Monitoring and Analysis 被引量:19
17
作者 Yue Hou Qiuhan Li +5 位作者 Chen Zhang Guoyang Lu Zhoujing Ye Yihan Chen Linbing Wang Dandan Cao 《Engineering》 SCIE EI 2021年第6期845-856,共12页
In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers a... In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers as they directly affect the regular service for the users.Therefore,monitoring the health status of pavement before irreversible damage occurs is essential for timely maintenance,which in turn ensures public transportation safety.Many pavement damages can be detected and analyzed by monitoring the structure dynamic responses and evaluating road surface conditions.Advanced technologies can be employed for the collection and analysis of such data,including various intrusive sensing techniques,image processing techniques,and machine learning methods.This review summarizes the state-ofthe-art of these three technologies in pavement engineering in recent years and suggests possible developments for future pavement monitoring and analysis based on these approaches. 展开更多
关键词 Pavement monitoring and analysis The state-of-the-art review Intrusive sensing image processing techniques Machine learning methods
在线阅读 下载PDF
Evaluation of Two Absolute Radiometric Normalization Algorithms for Pre-processing of Landsat Imagery 被引量:13
18
作者 徐涵秋 《Journal of China University of Geosciences》 SCIE CSCD 2006年第2期146-150,157,共6页
In order to evaluate radiometric normalization techniques, two image normalization algorithms for absolute radiometric correction of Landsat imagery were quantitatively compared in this paper, which are the Illuminati... In order to evaluate radiometric normalization techniques, two image normalization algorithms for absolute radiometric correction of Landsat imagery were quantitatively compared in this paper, which are the Illumination Correction Model proposed by Markham and Irish and the Illumination and Atmospheric Correction Model developed by the Remote Sensing and GIS Laboratory of the Utah State University. Relative noise, correlation coefficient and slope value were used as the criteria for the evaluation and comparison, which were derived from pseudo-invarlant features identified from multitemporal Landsat image pairs of Xiamen (厦门) and Fuzhou (福州) areas, both located in the eastern Fujian (福建) Province of China. Compared with the unnormalized image, the radiometric differences between the normalized multitemporal images were significantly reduced when the seasons of multitemporal images were different. However, there was no significant difference between the normalized and unnorrealized images with a similar seasonal condition. Furthermore, the correction results of two algorithms are similar when the images are relatively clear with a uniform atmospheric condition. Therefore, the radiometric normalization procedures should be carried out if the multitemporal images have a significant seasonal difference. 展开更多
关键词 LANDSAT radiometrie correction data normalization pseudo-invariant features image processing.
在线阅读 下载PDF
Determination of geological strength index of jointed rock mass based on image processing 被引量:8
19
作者 Kunui Hong Eunchol Han Kwangsong Kang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第4期702-708,共7页
The geological strength index(GSI) system,widely used for the design and practice of mining process,is a unique rock mass classification system related to the rock mass strength and deformation parameters based on the... The geological strength index(GSI) system,widely used for the design and practice of mining process,is a unique rock mass classification system related to the rock mass strength and deformation parameters based on the generalized Hoek-Brown and Mohr-Coulomb failure criteria.The GSI can be estimated using standard chart and field observations of rock mass blockiness and discontinuity surface conditions.The GSI value gives a numerical representation of the overall geotechnical quality of the rock mass.In this study,we propose a method to determine the GSI quantitatively using photographic images of in situ jointed rock mass with image processing technology,fractal theory and artificial neural network(ANN).We employ the GSI system to characterize the jointed rock mass around the working in a coal mine.The relative error between the proposed value and the given value in the GSI chart is less than 3.6%. 展开更多
关键词 Jointed rock mass Geological strength index(GSI) image processing Fractal dimension Artificial neural network(ANN)
在线阅读 下载PDF
Measuring the Condition of Parking Lot by Image Processing
20
作者 吴大勇 魏平 侯朝桢 《Journal of Beijing Institute of Technology》 EI CAS 1999年第3期232-237,共6页
Aim To study the parking management in the condition of vehicles' increasing. Methods The methods of pattern recognition and image processing were used to analyze the eigenvalues of parking lot images. Results ... Aim To study the parking management in the condition of vehicles' increasing. Methods The methods of pattern recognition and image processing were used to analyze the eigenvalues of parking lot images. Results The automatic identification of every parking place in the parking plot was realized. The automatic measuring of parked vehicle count and parking lot utilization was completed. Conclusion It can complete the real time recognition, and has some practicabilities. 展开更多
关键词 automatic measuring digital image processing pattern recognition
在线阅读 下载PDF
上一页 1 2 48 下一页 到第
使用帮助 返回顶部