We demonstrate a distributed two-dimensional(2D)strain-sensing system in optical frequency domain reflectometry(OFDR)with an Archimedean spiral arrangement of the sensing fiber.The Archimedean spiral describes a simpl...We demonstrate a distributed two-dimensional(2D)strain-sensing system in optical frequency domain reflectometry(OFDR)with an Archimedean spiral arrangement of the sensing fiber.The Archimedean spiral describes a simple relationship between the radial radius and polar angle,such that each circle(the polar angle from0 to 2π)can sense the 2D strain in all directions.The strain between two adjacent circles can also be easily obtained because an Archimedean spiral facilitates sensing of every angle covering the full 2D range.Based on the mathematical relation of Archimedean spirals,we deduce the relationship between the one-dimensional position of the sensing fiber and 2D distribution in polar coordinates.The results of the experiment show that an Archimedean spiral arrangement system can achieve 2D strain sensing with different strain load angles.展开更多
A nonlinearity-compensation-free optical frequency domain reflectometry(OFDR)scheme is proposed and experimentally demonstrated based on the electrically-controlled optical frequency sweep.In the proposed scheme,the l...A nonlinearity-compensation-free optical frequency domain reflectometry(OFDR)scheme is proposed and experimentally demonstrated based on the electrically-controlled optical frequency sweep.In the proposed scheme,the linear frequency sweep light is generated by propagating an ultra-narrow-linewidth continuous-wave(CW)light through an electro-optic frequency shifter which consists of a dual-parallel Mach-Zehnder modulator(DPMZM)and an electronic 90°hybrid,where the electro-optic frequency shifter is driven by a linear frequency modulated signal generated by a direct digital synthesizer(DDS).Experimental results show that the spatial resolution and signal-to-noise ratio(SNR)of the proposed OFDR scheme without the nonlinear phase compensation are comparable to those of OFDR employing a commercial tunable laser source(TLS),an auxiliary interferometer,and a software-based nonlinear phase compensation method.The proposed OFDR scheme is helpful to reduce the complexity of the optical structure and eliminate the difficulty of developing the nonlinear phase compensation algorithm.展开更多
A novel method of measuring non-uniform strain along a fiber Bragg grating(FBG) using optical frequency domain reflectometry(OFDR) is proposed and experimentally demonstrated. This method can overcome the problems of ...A novel method of measuring non-uniform strain along a fiber Bragg grating(FBG) using optical frequency domain reflectometry(OFDR) is proposed and experimentally demonstrated. This method can overcome the problems of traditional non-uniform strain measurement methods for FBGs, i.e., the likelihood of chirping and multiple peaking in the spectrum when FBG is subjected to inhomogeneous strain fields. Wavelength interrogation is realized by OFDR with a narrow-line-width tunable laser as the optical source. When non-uniform strain distributions along areas adjacent to structural damage are measured by this method, good agreement is obtained between measurements and theoretical simulation results.展开更多
基金supported in part by the National Natural Science Foundation of China(Grant Nos.61505138,61635008,61475114,61735011)in part by the Tianjin Science and Technology Support Plan Program Funding(Grant No.16JCQNJC01800)+2 种基金in part by the China Postdoctoral Science Foundation(Grant Nos.2015M580199,2016T90205)in part by the National Instrumentation Program(Grant No.2013YQ030915)in part by the National Key Research and Development Program(Grant No.2016YFC0100500)
文摘We demonstrate a distributed two-dimensional(2D)strain-sensing system in optical frequency domain reflectometry(OFDR)with an Archimedean spiral arrangement of the sensing fiber.The Archimedean spiral describes a simple relationship between the radial radius and polar angle,such that each circle(the polar angle from0 to 2π)can sense the 2D strain in all directions.The strain between two adjacent circles can also be easily obtained because an Archimedean spiral facilitates sensing of every angle covering the full 2D range.Based on the mathematical relation of Archimedean spirals,we deduce the relationship between the one-dimensional position of the sensing fiber and 2D distribution in polar coordinates.The results of the experiment show that an Archimedean spiral arrangement system can achieve 2D strain sensing with different strain load angles.
基金the National Natural Science Foundation of China under Grants No.61927821 and No.61575037.
文摘A nonlinearity-compensation-free optical frequency domain reflectometry(OFDR)scheme is proposed and experimentally demonstrated based on the electrically-controlled optical frequency sweep.In the proposed scheme,the linear frequency sweep light is generated by propagating an ultra-narrow-linewidth continuous-wave(CW)light through an electro-optic frequency shifter which consists of a dual-parallel Mach-Zehnder modulator(DPMZM)and an electronic 90°hybrid,where the electro-optic frequency shifter is driven by a linear frequency modulated signal generated by a direct digital synthesizer(DDS).Experimental results show that the spatial resolution and signal-to-noise ratio(SNR)of the proposed OFDR scheme without the nonlinear phase compensation are comparable to those of OFDR employing a commercial tunable laser source(TLS),an auxiliary interferometer,and a software-based nonlinear phase compensation method.The proposed OFDR scheme is helpful to reduce the complexity of the optical structure and eliminate the difficulty of developing the nonlinear phase compensation algorithm.
基金supported by the National High Technology Research and Development Program of China under Grant No.2012AA041203
文摘A novel method of measuring non-uniform strain along a fiber Bragg grating(FBG) using optical frequency domain reflectometry(OFDR) is proposed and experimentally demonstrated. This method can overcome the problems of traditional non-uniform strain measurement methods for FBGs, i.e., the likelihood of chirping and multiple peaking in the spectrum when FBG is subjected to inhomogeneous strain fields. Wavelength interrogation is realized by OFDR with a narrow-line-width tunable laser as the optical source. When non-uniform strain distributions along areas adjacent to structural damage are measured by this method, good agreement is obtained between measurements and theoretical simulation results.