期刊文献+
共找到26,600篇文章
< 1 2 250 >
每页显示 20 50 100
Mitigating Hotspot Problem Using Northern Goshawk Optimization Based Energy Aware Multi-Hop Communication for Wireless Sensor Networks
1
作者 S.Leones Sherwin Vimalraj J.Lydia 《China Communications》 2025年第2期283-298,共16页
Wireless Sensor Network(WSN)comprises a set of interconnected,compact,autonomous,and resource-constrained sensor nodes that are wirelessly linked to monitor and gather data from the physical environment.WSNs are commo... Wireless Sensor Network(WSN)comprises a set of interconnected,compact,autonomous,and resource-constrained sensor nodes that are wirelessly linked to monitor and gather data from the physical environment.WSNs are commonly used in various applications such as environmental monitoring,surveillance,healthcare,agriculture,and industrial automation.Despite the benefits of WSN,energy efficiency remains a challenging problem that needs to be addressed.Clustering and routing can be considered effective solutions to accomplish energy efficiency in WSNs.Recent studies have reported that metaheuristic algorithms can be applied to optimize cluster formation and routing decisions.This study introduces a new Northern Goshawk Optimization with boosted coati optimization algorithm for cluster-based routing(NGOBCO-CBR)method for WSN.The proposed NGOBCO-CBR method resolves the hot spot problem,uneven load balancing,and energy consumption in WSN.The NGOBCO-CBR technique comprises two major processes such as NGO based clustering and BCO-based routing.In the initial phase,the NGObased clustering method is designed for cluster head(CH)selection and cluster construction using five input variables such as residual energy(RE),node proximity,load balancing,network average energy,and distance to BS(DBS).Besides,the NGOBCO-CBR technique applies the BCO algorithm for the optimum selection of routes to BS.The experimental results of the NGOBCOCBR technique are studied under different scenarios,and the obtained results showcased the improved efficiency of the NGOBCO-CBR technique over recent approaches in terms of different measures. 展开更多
关键词 CLUSTERING energy efficiency metaheuristics multihop communication network lifetime wireless sensor networks
在线阅读 下载PDF
Data Gathering Based on Hybrid Energy Efficient Clustering Algorithm and DCRNN Model in Wireless Sensor Network
2
作者 Li Cuiran Liu Shuqi +1 位作者 Xie Jianli Liu Li 《China Communications》 2025年第3期115-131,共17页
In order to solve the problems of short network lifetime and high data transmission delay in data gathering for wireless sensor network(WSN)caused by uneven energy consumption among nodes,a hybrid energy efficient clu... In order to solve the problems of short network lifetime and high data transmission delay in data gathering for wireless sensor network(WSN)caused by uneven energy consumption among nodes,a hybrid energy efficient clustering routing base on firefly and pigeon-inspired algorithm(FF-PIA)is proposed to optimise the data transmission path.After having obtained the optimal number of cluster head node(CH),its result might be taken as the basis of producing the initial population of FF-PIA algorithm.The L′evy flight mechanism and adaptive inertia weighting are employed in the algorithm iteration to balance the contradiction between the global search and the local search.Moreover,a Gaussian perturbation strategy is applied to update the optimal solution,ensuring the algorithm can jump out of the local optimal solution.And,in the WSN data gathering,a onedimensional signal reconstruction algorithm model is developed by dilated convolution and residual neural networks(DCRNN).We conducted experiments on the National Oceanic and Atmospheric Administration(NOAA)dataset.It shows that the DCRNN modeldriven data reconstruction algorithm improves the reconstruction accuracy as well as the reconstruction time performance.FF-PIA and DCRNN clustering routing co-simulation reveals that the proposed algorithm can effectively improve the performance in extending the network lifetime and reducing data transmission delay. 展开更多
关键词 CLUSTERING data gathering DCRNN model network lifetime wireless sensor network
在线阅读 下载PDF
Enhanced Multi-Object Dwarf Mongoose Algorithm for Optimization Stochastic Data Fusion Wireless Sensor Network Deployment
3
作者 Shumin Li Qifang Luo Yongquan Zhou 《Computer Modeling in Engineering & Sciences》 2025年第2期1955-1994,共40页
Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic ... Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic models,and there is a significant gap between the research results and actual wireless sensor networks.Some scholars have now modeled data fusion networks to make them more suitable for practical applications.This paper will explore the deployment problem of a stochastic data fusion wireless sensor network(SDFWSN),a model that reflects the randomness of environmental monitoring and uses data fusion techniques widely used in actual sensor networks for information collection.The deployment problem of SDFWSN is modeled as a multi-objective optimization problem.The network life cycle,spatiotemporal coverage,detection rate,and false alarm rate of SDFWSN are used as optimization objectives to optimize the deployment of network nodes.This paper proposes an enhanced multi-objective mongoose optimization algorithm(EMODMOA)to solve the deployment problem of SDFWSN.First,to overcome the shortcomings of the DMOA algorithm,such as its low convergence and tendency to get stuck in a local optimum,an encircling and hunting strategy is introduced into the original algorithm to propose the EDMOA algorithm.The EDMOA algorithm is designed as the EMODMOA algorithm by selecting reference points using the K-Nearest Neighbor(KNN)algorithm.To verify the effectiveness of the proposed algorithm,the EMODMOA algorithm was tested at CEC 2020 and achieved good results.In the SDFWSN deployment problem,the algorithm was compared with the Non-dominated Sorting Genetic Algorithm II(NSGAII),Multiple Objective Particle Swarm Optimization(MOPSO),Multi-Objective Evolutionary Algorithm based on Decomposition(MOEA/D),and Multi-Objective Grey Wolf Optimizer(MOGWO).By comparing and analyzing the performance evaluation metrics and optimization results of the objective functions of the multi-objective algorithms,the algorithm outperforms the other algorithms in the SDFWSN deployment results.To better demonstrate the superiority of the algorithm,simulations of diverse test cases were also performed,and good results were obtained. 展开更多
关键词 Stochastic data fusion wireless sensor networks network deployment spatiotemporal coverage dwarf mongoose optimization algorithm multi-objective optimization
在线阅读 下载PDF
Optimizing wireless sensor network topology with node load consideration
4
作者 Ruizhi CHEN 《虚拟现实与智能硬件(中英文)》 2025年第1期47-61,共15页
Background With the development of the Internet,the topology optimization of wireless sensor networks has received increasing attention.However,traditional optimization methods often overlook the energy imbalance caus... Background With the development of the Internet,the topology optimization of wireless sensor networks has received increasing attention.However,traditional optimization methods often overlook the energy imbalance caused by node loads,which affects network performance.Methods To improve the overall performance and efficiency of wireless sensor networks,a new method for optimizing the wireless sensor network topology based on K-means clustering and firefly algorithms is proposed.The K-means clustering algorithm partitions nodes by minimizing the within-cluster variance,while the firefly algorithm is an optimization algorithm based on swarm intelligence that simulates the flashing interaction between fireflies to guide the search process.The proposed method first introduces the K-means clustering algorithm to cluster nodes and then introduces a firefly algorithm to dynamically adjust the nodes.Results The results showed that the average clustering accuracies in the Wine and Iris data sets were 86.59%and 94.55%,respectively,demonstrating good clustering performance.When calculating the node mortality rate and network load balancing standard deviation,the proposed algorithm showed dead nodes at approximately 50 iterations,with an average load balancing standard deviation of 1.7×10^(4),proving its contribution to extending the network lifespan.Conclusions This demonstrates the superiority of the proposed algorithm in significantly improving the energy efficiency and load balancing of wireless sensor networks to extend the network lifespan.The research results indicate that wireless sensor networks have theoretical and practical significance in fields such as monitoring,healthcare,and agriculture. 展开更多
关键词 Node load Wireless sensor network K-means clustering Firefly algorithm Topology optimization
在线阅读 下载PDF
An Enhanced Fuzzy Routing Protocol for Energy Optimization in the Underwater Wireless Sensor Networks
5
作者 Mehran Tarif Mohammadhossein Homaei Amir Mosavi 《Computers, Materials & Continua》 2025年第5期1791-1820,共30页
Underwater Wireless Sensor Networks(UWSNs)are gaining popularity because of their potential uses in oceanography,seismic activity monitoring,environmental preservation,and underwater mapping.Yet,these networks are fac... Underwater Wireless Sensor Networks(UWSNs)are gaining popularity because of their potential uses in oceanography,seismic activity monitoring,environmental preservation,and underwater mapping.Yet,these networks are faced with challenges such as self-interference,long propagation delays,limited bandwidth,and changing network topologies.These challenges are coped with by designing advanced routing protocols.In this work,we present Under Water Fuzzy-Routing Protocol for Low power and Lossy networks(UWF-RPL),an enhanced fuzzy-based protocol that improves decision-making during path selection and traffic distribution over different network nodes.Our method extends RPL with the aid of fuzzy logic to optimize depth,energy,Received Signal Strength Indicator(RSSI)to Expected Transmission Count(ETX)ratio,and latency.Theproposed protocol outperforms other techniques in that it offersmore energy efficiency,better packet delivery,lowdelay,and no queue overflow.It also exhibits better scalability and reliability in dynamic underwater networks,which is of very high importance in maintaining the network operations efficiency and the lifetime of UWSNs optimized.Compared to other recent methods,it offers improved network convergence time(10%–23%),energy efficiency(15%),packet delivery(17%),and delay(24%). 展开更多
关键词 Underwater sensor networks(UWSNs) ROUTING energy fuzzy logic MULTIPATH load balancing
在线阅读 下载PDF
A Fuzzy Multi-Objective Framework for Energy Optimization and Reliable Routing in Wireless Sensor Networks via Particle Swarm Optimization
6
作者 Medhat A.Tawfeek Ibrahim Alrashdi +1 位作者 Madallah Alruwaili Fatma M.Talaat 《Computers, Materials & Continua》 2025年第5期2773-2792,共20页
Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectu... Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectural attention,routing protocols,location exploration,time exploration,etc.This research aims to optimize routing protocols and address the challenges arising from conflicting objectives in WSN environments,such as balancing energy consumption,ensuring routing reliability,distributing network load,and selecting the shortest path.Many optimization techniques have shown success in achieving one or two objectives but struggle to achieve the right balance between multiple conflicting objectives.To address this gap,this paper proposes an innovative approach that integrates Particle Swarm Optimization(PSO)with a fuzzy multi-objective framework.The proposed method uses fuzzy logic to effectively control multiple competing objectives to represent its major development beyond existing methods that only deal with one or two objectives.The search efficiency is improved by particle swarm optimization(PSO)which overcomes the large computational requirements that serve as a major drawback of existing methods.The PSO algorithm is adapted for WSNs to optimize routing paths based on fuzzy multi-objective fitness.The fuzzy logic framework uses predefined membership functions and rule-based reasoning to adjust routing decisions.These adjustments influence PSO’s velocity updates,ensuring continuous adaptation under varying network conditions.The proposed multi-objective PSO-fuzzy model is evaluated using NS-3 simulation.The results show that the proposed model is capable of improving the network lifetime by 15.2%–22.4%,increasing the stabilization time by 18.7%–25.5%,and increasing the residual energy by 8.9%–16.2% compared to the state-of-the-art techniques.The proposed model also achieves a 15%–24% reduction in load variance,demonstrating balanced routing and extended network lifetime.Furthermore,analysis using p-values obtained from multiple performance measures(p-values<0.05)showed that the proposed approach outperforms with a high level of confidence.The proposed multi-objective PSO-fuzzy model provides a robust and scalable solution to improve the performance of WSNs.It allows stable performance in networks with 100 to 300 nodes,under varying node densities,and across different base station placements.Computational complexity analysis has shown that the method fits well into large-scale WSNs and that the addition of fuzzy logic controls the power usage to make the system practical for real-world use. 展开更多
关键词 Wireless sensor networks particle swarm optimization fuzzy multi-objective framework routing stability
在线阅读 下载PDF
Efficient Cooperative Target Node Localization with Optimization Strategy Based on RSS for Wireless Sensor Networks
7
作者 Xinrong Zhang Bo Chang 《Computers, Materials & Continua》 2025年第3期5079-5095,共17页
In the RSSI-based positioning algorithm,regarding the problem of a great conflict between precision and cost,a low-power and low-cost synergic localization algorithm is proposed,where effective methods are adopted in ... In the RSSI-based positioning algorithm,regarding the problem of a great conflict between precision and cost,a low-power and low-cost synergic localization algorithm is proposed,where effective methods are adopted in each phase of the localization process and fully use the detective information in the network to improve the positioning precision and robustness.In the ranging period,the power attenuation factor is obtained through the wireless channel modeling,and the RSSI value is transformed into distance.In the positioning period,the preferred reference nodes are used to calculate coordinates.In the position optimization period,Taylor expansion and least-squared iterative update algorithms are used to further improve the location precision.In the positioning,the notion of cooperative localization is introduced,in which the located node satisfying certain demands will be upgraded to a reference node so that it can participate in the positioning of other nodes,and improve the coverage and positioning precision.The results show that on the same network conditions,the proposed algorithm in this paper is similar to the Taylor series expansion algorithm based on the actual coordinates,but much higher than the basic least square algorithm,and the positioning precision is improved rapidly with the reduce of the range error. 展开更多
关键词 Wireless sensor networks received signal strength(RSS) optimization algorithm cooperative localiza-tion weighted least squares
在线阅读 下载PDF
AN ADAPTIVE-WEIGHTED TWO-DIMENSIONAL DATA AGGREGATION ALGORITHM FOR CLUSTERED WIRELESS SENSOR NETWORKS
8
作者 Zhang Junhu Zhu Xiujuan Peng Hui 《Journal of Electronics(China)》 2013年第6期525-537,共13页
In this paper,an Adaptive-Weighted Time-Dimensional and Space-Dimensional(AWTDSD) data aggregation algorithm for a clustered sensor network is proposed for prolonging the lifetime of the network as well as improving t... In this paper,an Adaptive-Weighted Time-Dimensional and Space-Dimensional(AWTDSD) data aggregation algorithm for a clustered sensor network is proposed for prolonging the lifetime of the network as well as improving the accuracy of the data gathered in the network.AWTDSD contains three phases:(1) the time-dimensional aggregation phase for eliminating the data redundancy;(2) the adaptive-weighted aggregation phase for further aggregating the data as well as improving the accuracy of the aggregated data; and(3) the space-dimensional aggregation phase for reducing the size and the amount of the data transmission to the base station.AWTDSD utilizes the correlations between the sensed data for reducing the data transmission and increasing the data accuracy as well.Experimental result shows that AWTDSD can not only save almost a half of the total energy consumption but also greatly increase the accuracy of the data monitored by the sensors in the clustered network. 展开更多
关键词 Data aggregation Adaptive-weighted aggregation Clustered Wireless sensor networks(WSNs) Linear regression Data accuracy Energy consumption Lempel-Ziv-Welch (LZW)
在线阅读 下载PDF
Rao Algorithms-Based Structure Optimization for Heterogeneous Wireless Sensor Networks 被引量:1
9
作者 Shereen K.Refaay Samia A.Ali +2 位作者 Moumen T.El-Melegy Louai A.Maghrabi Hamdy H.El-Sayed 《Computers, Materials & Continua》 SCIE EI 2024年第1期873-897,共25页
The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few hav... The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few have been performed for heterogeneouswireless sensor networks.This paper utilizes Rao algorithms to optimize the structure of heterogeneous wireless sensor networks according to node locations and their initial energies.The proposed algorithms lack algorithm-specific parameters and metaphorical connotations.The proposed algorithms examine the search space based on the relations of the population with the best,worst,and randomly assigned solutions.The proposed algorithms can be evaluated using any routing protocol,however,we have chosen the well-known routing protocols in the literature:Low Energy Adaptive Clustering Hierarchy(LEACH),Power-Efficient Gathering in Sensor Information Systems(PEAGSIS),Partitioned-based Energy-efficient LEACH(PE-LEACH),and the Power-Efficient Gathering in Sensor Information Systems Neural Network(PEAGSIS-NN)recent routing protocol.We compare our optimized method with the Jaya,the Particle Swarm Optimization-based Energy Efficient Clustering(PSO-EEC)protocol,and the hybrid Harmony Search Algorithm and PSO(HSA-PSO)algorithms.The efficiencies of our proposed algorithms are evaluated by conducting experiments in terms of the network lifetime(first dead node,half dead nodes,and last dead node),energy consumption,packets to cluster head,and packets to the base station.The experimental results were compared with those obtained using the Jaya optimization algorithm.The proposed algorithms exhibited the best performance.The proposed approach successfully prolongs the network lifetime by 71% for the PEAGSIS protocol,51% for the LEACH protocol,10% for the PE-LEACH protocol,and 73% for the PEGSIS-NN protocol;Moreover,it enhances other criteria such as energy conservation,fitness convergence,packets to cluster head,and packets to the base station. 展开更多
关键词 Wireless sensor networks Rao algorithms OPTIMIZATION LEACH PEAGSIS
在线阅读 下载PDF
UAV-assisted data collection for wireless sensor networks with dynamic working modes 被引量:1
10
作者 Jie Chen Jianhua Tang 《Digital Communications and Networks》 SCIE CSCD 2024年第3期805-812,共8页
Wireless Sensor Network(WSN)is a cornerstone of Internet of Things(IoT)and has rich application scenarios.In this work,we consider a heterogeneous WSN whose sensor nodes have a diversity in their Residual Energy(RE).I... Wireless Sensor Network(WSN)is a cornerstone of Internet of Things(IoT)and has rich application scenarios.In this work,we consider a heterogeneous WSN whose sensor nodes have a diversity in their Residual Energy(RE).In this work,to protect the sensor nodes with low RE,we investigate dynamic working modes for sensor nodes which are determined by their RE and an introduced energy threshold.Besides,we employ an Unmanned Aerial Vehicle(UAV)to collect the stored data from the heterogeneous WSN.We aim to jointly optimize the cluster head selection,energy threshold and sensor nodes’working mode to minimize the weighted sum of energy con-sumption from the WSN and UAV,subject to the data collection rate constraint.To this end,we propose an efficient search method to search for an optimal energy threshold,and develop a penalty-based successive convex approximation algorithm to select the cluster heads.Then we present a low-complexity iterative approach to solve the joint optimization problem and discuss the implementation procedure.Numerical results justify that our proposed approach is able to reduce the energy consumption of the sensor nodes with low RE significantly and also saves energy for the whole WSN. 展开更多
关键词 Unmanned aerial vehicle Wireless sensor networks Cluster heads Dynamic working modes
在线阅读 下载PDF
Sensor Scheduling for Target Tracking in Networks of Active Sensors 被引量:7
11
作者 XIAO Wen-Dong WU Jian-Kang +1 位作者 XIE Li-Hua DONG Liang 《自动化学报》 EI CSCD 北大核心 2006年第6期922-928,共7页
Wireless sensor network (WSN) of active sensors suffers from serious inter-sensor interference (ISI) and imposes new design and implementation challenges. In this paper, based on the ultrasonic sensor network, two tim... Wireless sensor network (WSN) of active sensors suffers from serious inter-sensor interference (ISI) and imposes new design and implementation challenges. In this paper, based on the ultrasonic sensor network, two time-division based distributed sensor scheduling schemes are proposed to deal with ISI by scheduling sensors periodically and adaptively respectively. Extended Kalman filter (EKF) is used as the tracking algorithm in distributed manner. Simulation results show that the adaptive sensor scheduling scheme can achieve superior tracking accuracy with faster tracking convergence speed. 展开更多
关键词 Wireless sensor network sensor scheduling target tracking active sensor
在线阅读 下载PDF
A Fuzzy Trust Management Mechanism with Dynamic Behavior Monitoring for Wireless Sensor Networks
12
作者 Fu Shiming Zhang Ping Shi Xuehong 《China Communications》 SCIE CSCD 2024年第5期177-189,共13页
Traditional wireless sensor networks(WSNs)are typically deployed in remote and hostile environments for information collection.The wireless communication methods adopted by sensor nodes may make the network highly vul... Traditional wireless sensor networks(WSNs)are typically deployed in remote and hostile environments for information collection.The wireless communication methods adopted by sensor nodes may make the network highly vulnerable to various attacks.Traditional encryption and authentication mechanisms cannot prevent attacks launched by internal malicious nodes.The trust-based security mechanism is usually adopted to solve this problem in WSNs.However,the behavioral evidence used for trust estimation presents some uncertainties due to the open wireless medium and the inexpensive sensor nodes.Moreover,how to efficiently collect behavioral evidences are rarely discussed.To address these issues,in this paper,we present a trust management mechanism based on fuzzy logic and a cloud model.First,a type-II fuzzy logic system is used to preprocess the behavioral evidences and alleviate uncertainty.Then,the cloud model is introduced to estimate the trust values for sensor nodes.Finally,a dynamic behavior monitoring protocol is proposed to provide a balance between energy conservation and safety assurance.Simulation results demonstrate that our trust management mechanism can effectively protect the network from internal malicious attacks while enhancing the energy efficiency of behavior monitoring. 展开更多
关键词 behavior monitoring CLOUD FUZZY TRUST wireless sensor networks
在线阅读 下载PDF
Mechanism analysis of regulating Turing instability and Hopf bifurcation of malware propagation in mobile wireless sensor networks
13
作者 黄习习 肖敏 +3 位作者 Leszek Rutkowski 包海波 黄霞 曹进德 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期125-140,共16页
A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation... A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation and state feedback to effectively manipulate the spatiotemporal dynamics of malware propagation. The hybrid control can not only suppress the Turing instability caused by diffusion factor but can also adjust the occurrence of Hopf bifurcation induced by time delay. Numerical simulation results show that the hybrid control strategy can efficiently manipulate the transmission dynamics to achieve our expected desired properties, thus reducing the harm of malware propagation to MWSNs. 展开更多
关键词 mobile wireless sensor networks REACTION-DIFFUSION Hopf bifurcation hybrid control
在线阅读 下载PDF
Blockchain-Enabled Mitigation Strategies for Distributed Denial of Service Attacks in IoT Sensor Networks:An Experimental Approach
14
作者 Kithmini Godewatte Arachchige Mohsin Murtaza +2 位作者 Chi-Tsun Cheng Bader M.Albahlal Cheng-Chi Lee 《Computers, Materials & Continua》 SCIE EI 2024年第12期3679-3705,共27页
Information security has emerged as a crucial consideration over the past decade due to escalating cyber security threats,with Internet of Things(IoT)security gaining particular attention due to its role in data commu... Information security has emerged as a crucial consideration over the past decade due to escalating cyber security threats,with Internet of Things(IoT)security gaining particular attention due to its role in data communication across various industries.However,IoT devices,typically low-powered,are susceptible to cyber threats.Conversely,blockchain has emerged as a robust solution to secure these devices due to its decentralised nature.Nevertheless,the fusion of blockchain and IoT technologies is challenging due to performance bottlenecks,network scalability limitations,and blockchain-specific security vulnerabilities.Blockchain,on the other hand,is a recently emerged information security solution that has great potential to secure low-powered IoT devices.This study aims to identify blockchain-specific vulnerabilities through changes in network behaviour,addressing a significant research gap and aiming to mitigate future cybersecurity threats.Integrating blockchain and IoT technologies presents challenges,including performance bottlenecks,network scalability issues,and unique security vulnerabilities.This paper analyses potential security weaknesses in blockchain and their impact on network operations.We developed a real IoT test system utilising three prevalent blockchain applications to conduct experiments.The results indicate that Distributed Denial of Service(DDoS)attacks on low-powered,blockchain-enabled IoT sensor networks cause measurable anomalies in network and device performance,specifically:(1)an average increase in CPU core usage to 34.32%,(2)a reduction in hash rates by up to 66%,(3)an increase in batch timeout by up to 14.28%,and(4)an increase in block latency by up to 11.1%.These findings suggest potential strategies to counter future DDoS attacks on IoT networks. 展开更多
关键词 Blockchain cyber intrusions DDOS IOT low powered sensors VULNERABILITIES wireless network
在线阅读 下载PDF
Enhancing Wireless Sensor Network Efficiency through Al-Biruni Earth Radius Optimization
15
作者 Reem Ibrahim Alkanhel Doaa Sami Khafaga +4 位作者 Ahmed Mohamed Zaki Marwa M.Eid Abdyalaziz A.Al-Mooneam Abdelhameed Ibrahim S.K.Towfek 《Computers, Materials & Continua》 SCIE EI 2024年第6期3549-3568,共20页
The networks of wireless sensors provide the ground for a range of applications,including environmental moni-toring and industrial operations.Ensuring the networks can overcome obstacles like power and communication r... The networks of wireless sensors provide the ground for a range of applications,including environmental moni-toring and industrial operations.Ensuring the networks can overcome obstacles like power and communication reliability and sensor coverage is the crux of network optimization.Network infrastructure planning should be focused on increasing performance,and it should be affected by the detailed data about node distribution.This work recommends the creation of each sensor’s specs and radius of influence based on a particular geographical location,which will contribute to better network planning and design.By using the ARIMA model for time series forecasting and the Al-Biruni Earth Radius algorithm for optimization,our approach bridges the gap between successive terrains while seeking the equilibrium between exploration and exploitation.Through implementing adaptive protocols according to varying environments and sensor constraints,our study aspires to improve overall network operation.We compare the Al-Biruni Earth Radius algorithm along with Gray Wolf Optimization,Particle Swarm Optimization,Genetic Algorithms,and Whale Optimization about performance on real-world problems.Being the most efficient in the optimization process,Biruni displays the lowest error rate at 0.00032.The two other statistical techniques,like ANOVA,are also useful in discovering the factors influencing the nature of sensor data and network-specific problems.Due to the multi-faceted support the comprehensive approach promotes,there is a chance to understand the dynamics that affect the optimization outcomes better so decisions about network design can be made.Through delivering better performance and reliability for various in-situ applications,this research leads to a fusion of time series forecasters and a customized optimizer algorithm. 展开更多
关键词 Wireless sensor networks OPTIMIZATION ARIMA model BER algorithm metaheuristic algorithms
在线阅读 下载PDF
Event-based nonfragile state estimation for memristive recurrent neural networks with stochastic cyber-attacks and sensor saturations
16
作者 邵晓光 张捷 鲁延娟 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期126-135,共10页
This paper addresses the issue of nonfragile state estimation for memristive recurrent neural networks with proportional delay and sensor saturations. In practical engineering, numerous unnecessary signals are transmi... This paper addresses the issue of nonfragile state estimation for memristive recurrent neural networks with proportional delay and sensor saturations. In practical engineering, numerous unnecessary signals are transmitted to the estimator through the networks, which increases the burden of communication bandwidth. A dynamic event-triggered mechanism,instead of a static event-triggered mechanism, is employed to select useful data. By constructing a meaningful Lyapunov–Krasovskii functional, a delay-dependent criterion is derived in terms of linear matrix inequalities for ensuring the global asymptotic stability of the augmented system. In the end, two numerical simulations are employed to illustrate the feasibility and validity of the proposed theoretical results. 展开更多
关键词 memristor-based neural networks proportional delays dynamic event-triggered mechanism sensor saturations
在线阅读 下载PDF
A blockchain-empowered authentication scheme for worm detection in wireless sensor network
17
作者 Yuling Chen Xiong Yang +2 位作者 Tao Li Yi Ren Yangyang Long 《Digital Communications and Networks》 SCIE CSCD 2024年第2期265-272,共8页
Wireless Sensor Network(WSN)is a distributed sensor network composed a large number of nodes with low cost,low performance and self-management.The special structure of WSN brings both convenience and vulnerability.For... Wireless Sensor Network(WSN)is a distributed sensor network composed a large number of nodes with low cost,low performance and self-management.The special structure of WSN brings both convenience and vulnerability.For example,a malicious participant can launch attacks by capturing a physical device.Therefore,node authentication that can resist malicious attacks is very important to network security.Recently,blockchain technology has shown the potential to enhance the security of the Internet of Things(IoT).In this paper,we propose a Blockchain-empowered Authentication Scheme(BAS)for WSN.In our scheme,all nodes are managed by utilizing the identity information stored on the blockchain.Besides,the simulation experiment about worm detection is executed on BAS,and the security is evaluated from detection and infection rate.The experiment results indicate that the proposed scheme can effectively inhibit the spread and infection of worms in the network. 展开更多
关键词 Wireless sensor network(WSN) Node authentication Blockchain TANGLE Worm detection
在线阅读 下载PDF
Stackelberg Game for Wireless Powered and Backscattering Enabled Sensor Networks
18
作者 Lyu Bin Cao Yi +2 位作者 Wang Shuai Guo Haiyan Hao Chengyao 《China Communications》 SCIE CSCD 2024年第3期189-204,共16页
This paper investigates a wireless powered and backscattering enabled sensor network based on the non-linear energy harvesting model, where the power beacon(PB) delivers energy signals to wireless sensors to enable th... This paper investigates a wireless powered and backscattering enabled sensor network based on the non-linear energy harvesting model, where the power beacon(PB) delivers energy signals to wireless sensors to enable their passive backscattering and active transmission to the access point(AP). We propose an efficient time scheduling scheme for network performance enhancement, based on which each sensor can always harvest energy from the PB over the entire block except its time slots allocated for passive and active information delivery. Considering the PB and wireless sensors are from two selfish service providers, we use the Stackelberg game to model the energy interaction among them. To address the non-convexity of the leader-level problem, we propose to decompose the original problem into two subproblems and solve them iteratively in an alternating manner. Specifically, the successive convex approximation, semi-definite relaxation(SDR) and variable substitution techniques are applied to find a nearoptimal solution. To evaluate the performance loss caused by the interaction between two providers, we further investigate the social welfare maximization problem. Numerical results demonstrate that compared to the benchmark schemes, the proposed scheme can achieve up to 35.4% and 38.7% utility gain for the leader and the follower, respectively. 展开更多
关键词 backscatter communication energy interaction stackelberg game wireless powered sensor network
在线阅读 下载PDF
A Practical Approach for Missing Wireless Sensor Networks Data Recovery
19
作者 Song Xiaoxiang Guo Yan +1 位作者 Li Ning Ren Bing 《China Communications》 SCIE CSCD 2024年第5期202-217,共16页
In wireless sensor networks(WSNs),the performance of related applications is highly dependent on the quality of data collected.Unfortunately,missing data is almost inevitable in the process of data acquisition and tra... In wireless sensor networks(WSNs),the performance of related applications is highly dependent on the quality of data collected.Unfortunately,missing data is almost inevitable in the process of data acquisition and transmission.Existing methods often rely on prior information such as low-rank characteristics or spatiotemporal correlation when recovering missing WSNs data.However,in realistic application scenarios,it is very difficult to obtain these prior information from incomplete data sets.Therefore,we aim to recover the missing WSNs data effectively while getting rid of the perplexity of prior information.By designing the corresponding measurement matrix that can capture the position of missing data and sparse representation matrix,a compressive sensing(CS)based missing data recovery model is established.Then,we design a comparison standard to select the best sparse representation basis and introduce average cross-correlation to examine the rationality of the established model.Furthermore,an improved fast matching pursuit algorithm is proposed to solve the model.Simulation results show that the proposed method can effectively recover the missing WSNs data. 展开更多
关键词 average cross correlation matching pursuit missing data wireless sensor networks
在线阅读 下载PDF
Collaborative Charging Scheduling in Wireless Charging Sensor Networks
20
作者 Qiuyang Wang Zhen Xu Lei Yang 《Computers, Materials & Continua》 SCIE EI 2024年第4期1613-1630,共18页
Wireless sensor networks (WSNs) have the trouble of limited battery power, and wireless charging provides apromising solution to this problem, which is not easily affected by the external environment. In this paper, w... Wireless sensor networks (WSNs) have the trouble of limited battery power, and wireless charging provides apromising solution to this problem, which is not easily affected by the external environment. In this paper, we studythe recharging of sensors in wireless rechargeable sensor networks (WRSNs) by scheduling two mobile chargers(MCs) to collaboratively charge sensors. We first formulate a novel sensor charging scheduling problem with theobjective of maximizing the number of surviving sensors, and further propose a collaborative charging schedulingalgorithm(CCSA) for WRSNs. In the scheme, the sensors are divided into important sensors and ordinary sensors.TwoMCs can adaptively collaboratively charge the sensors based on the energy limit ofMCs and the energy demandof sensors. Finally, we conducted comparative simulations. The simulation results show that the proposed algorithmcan effectively reduce the death rate of the sensor. The proposed algorithm provides a solution to the uncertaintyof node charging tasks and the collaborative challenges posed by multiple MCs in practical scenarios. 展开更多
关键词 Wireless rechargeable sensor network mobile charger collaborative charging adaptive charging
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部