期刊文献+
共找到969篇文章
< 1 2 49 >
每页显示 20 50 100
A novel (G'/G)-expansion method and its application to the Boussinesq equation 被引量:15
1
作者 Md.Nur Alam Md.Ali Akbar Syed Tauseef Mohyud-Din 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第2期34-43,共10页
In this article, a novel (G'/G)-expansion method is proposed to search for the traveling wave solutions of nonlinear evolution equations. We construct abundant traveling wave solutions involving parameters to the B... In this article, a novel (G'/G)-expansion method is proposed to search for the traveling wave solutions of nonlinear evolution equations. We construct abundant traveling wave solutions involving parameters to the Boussinesq equation by means of the suggested method. The performance of the method is reliable and useful, and gives more general exact solutions than the existing methods. The new (G'/G)-expansion method provides not only more general forms of solutions but also cuspon, peakon, soliton, and periodic waves. 展开更多
关键词 g'/g)-expansion method Boussinesq equation solitary wave solutions auxiliary nonlinear ordinary differential equation
在线阅读 下载PDF
Exact solutions of nonlinear fractional differential equations by (G'/G)-expansion method 被引量:6
2
作者 Ahmet Bekir zkan Güner 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第11期140-145,共6页
In this paper, we use the fractional complex transform and the (G'/G)-expansion method to study the nonlinear fractional differential equations and find the exact solutions. The fractional complex transform is prop... In this paper, we use the fractional complex transform and the (G'/G)-expansion method to study the nonlinear fractional differential equations and find the exact solutions. The fractional complex transform is proposed to convert a partial fractional differential equation with Jumarie's modified Riemann-Liouville derivative into its ordinary differential equation. It is shown that the considered transform and method are very efficient and powerful in solving wide classes of nonlinear fractional order equations. 展开更多
关键词 g'/g)-expansion method time-fractional Burgers equation fractional-order biological popula-tion model space-time fractional Whitham-Broer-Kaup equations
在线阅读 下载PDF
A Generalized (G'/G)-Expansion Method to Find the Traveling Wave Solutions of Nonlinear Evolution Equations 被引量:3
3
作者 GEPREEL Khaled A 《Journal of Partial Differential Equations》 2011年第1期55-69,共15页
In this article, we construct the exact traveling wave solutions for nonlinear evolution equations in the mathematical physics via the modified Kawahara equation, the nonlinear coupled KdV equations and the classical ... In this article, we construct the exact traveling wave solutions for nonlinear evolution equations in the mathematical physics via the modified Kawahara equation, the nonlinear coupled KdV equations and the classical Boussinesq equations, by using a generalized (G'/G)-expansion method, where G satisfies the Jacobi elliptic equation. Many exact solutions in terms of Jacobi elliptic functions are obtained. 展开更多
关键词 A generalized g'/g)-expansion method traveling wave solutions the modifiedKawahara equation the coupled KdV equations the classical Boussinesq equations the Jacobielliptic functions.
原文传递
Comment on “Application of the (G'/G)-Expansion Method for Nonlinear Evolution Equations”[Phys.Lett.A 372 (2008) 3400] 被引量:3
4
作者 ZHU Peng 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第8期206-208,共3页
In this paper,some travelling wave solutions involving parameters of the Modified Zakharov-Kuznetsovequation [Phys.Lett.A 372 (2008) 3400] are investigated.We will show that these solutions are not new travellingwave ... In this paper,some travelling wave solutions involving parameters of the Modified Zakharov-Kuznetsovequation [Phys.Lett.A 372 (2008) 3400] are investigated.We will show that these solutions are not new travellingwave solutions. 展开更多
关键词 g'/g)-expansion method travelling wave solutions Modified Zakharov-Kuznetsov equation
在线阅读 下载PDF
The (ω/g)-expansion method and its application to Vakhnenko equation 被引量:9
5
作者 李文安 陈浩 张国才 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第2期400-404,共5页
This paper presents a new function expansion method for finding travelling wave solutions of a nonlinear evolution equation and calls it the (w/g)-expansion method, which can be thought of as the generalization of ... This paper presents a new function expansion method for finding travelling wave solutions of a nonlinear evolution equation and calls it the (w/g)-expansion method, which can be thought of as the generalization of (G'/G)-expansion given by Wang et al recently. As an application of this new method, we study the well-known Vakhnenko equation which describes the propagation of high-frequency waves in a relaxing medium. With two new expansions, general types of soliton solutions and periodic solutions for Vakhnenko equation are obtained. 展开更多
关键词 (w/g)-expansion method Vakhnenko equation travelling wave solutions
在线阅读 下载PDF
The (G'/G, 1/G)-expansion method and its application to travelling wave solutions of the Zakharov equations 被引量:13
6
作者 LI Ling-xiao LI Er-qiang WANG Ming-liang 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2010年第4期454-462,共9页
The (G'/G, 1/G)-expansion method for finding exact travelling wave solutions of nonlinear evolution equations, which can be thought of as an extension of the (G'/G)-expansion method proposed recently, is present... The (G'/G, 1/G)-expansion method for finding exact travelling wave solutions of nonlinear evolution equations, which can be thought of as an extension of the (G'/G)-expansion method proposed recently, is presented. By using this method abundant travelling wave so- lutions with arbitrary parameters of the Zakharov equations are successfully obtained. When the parameters are replaced by special values, the well-known solitary wave solutions of the equations are rediscovered from the travelling waves. 展开更多
关键词 The (g /g 1/g)-expansion method travelling wave solutions homogeneous balance solitary wave solutions Zakharov equations.
在线阅读 下载PDF
A connection between the(G'/G)-expansion method and the truncated Painlevé expansion method and its application to the mKdV equation 被引量:3
7
作者 赵银龙 柳银萍 李志斌 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第3期41-46,共6页
Recently the (G′/G)-expansion method was proposed to find the traveling wave solutions of nonlinear evolution equations. This paper shows that the (G′/G)-expansion method is a special form of the truncated Pain... Recently the (G′/G)-expansion method was proposed to find the traveling wave solutions of nonlinear evolution equations. This paper shows that the (G′/G)-expansion method is a special form of the truncated Painlev'e expansion method by introducing an intermediate expansion method. Then the generalized (G′/G)-(G/G′) expansion method is naturally derived from the standpoint of the nonstandard truncated Painlev'e expansion. The application of the generalized method to the mKdV equation shows that it extends the range of exact solutions obtained by using the ( G′/ G)-expansion method. 展开更多
关键词 (g′/g)-expansion method truncated Painlev'e expansion method mKdV equation trav-eling wave solutions
在线阅读 下载PDF
Exact Solution to Nonlinear Differential Equations of Fractional Order via (<i>G’</i>/<i>G</i>)-Expansion Method 被引量:4
8
作者 Muhammad Younis Asim Zafar 《Applied Mathematics》 2014年第1期1-6,共6页
In this article, a new application to find the exact solutions of nonlinear partial time-space fractional differential Equation has been discussed. Firstly, the fractional complex transformation has been implemented t... In this article, a new application to find the exact solutions of nonlinear partial time-space fractional differential Equation has been discussed. Firstly, the fractional complex transformation has been implemented to convert nonlinear partial fractional differential Equations into nonlinear ordinary differential Equations. Afterwards, the (G'/G)-expansion method has been implemented, to celebrate the exact solutions of these Equations, in the sense of modified Riemann-Liouville derivative. As application, the exact solutions of time-space fractional Burgers’ Equation have been discussed. 展开更多
关键词 EXACT Solution to Nonlinear Differential Equations of Fractional Order VIA (g’/g)-expansion method
在线阅读 下载PDF
(G'/G)-Expansion Method Equivalent to Extended Tanh Function Method 被引量:1
9
作者 LIU Chun-Ping 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第6期985-988,共4页
In a recent article [Physics Letters A 372 (2008) 417], Wang et al. proposed a method, which is called the (G′/G)-expansion method, to look for travelling wave solutions of nonlinear evolution equations. The trav... In a recent article [Physics Letters A 372 (2008) 417], Wang et al. proposed a method, which is called the (G′/G)-expansion method, to look for travelling wave solutions of nonlinear evolution equations. The travelling wave solutions involving parameters of the KdV equation, the mKdV equation, the variant Boussinesq equations, and the Hirota-Satsuma equations are obtained by using this method. They think the (G′/G)-expansion method is a new method and more travelling wave solutions of many nonlinear evolution equations can be obtained. In this paper, we will show that the (G′/G)-expansion method is equivalent to the extended tanh function method. 展开更多
关键词 (g′/g)-expansion method extended tanh function method Riccati equation KdV equation
在线阅读 下载PDF
An Innovative Solutions for the Generalized FitzHugh-Nagumo Equation by Using the Generalized (G'/G)-Expansion Method 被引量:1
10
作者 Sayed Kahlil Elagan Mohamed Sayed Yaser Salah Hamed 《Applied Mathematics》 2011年第4期470-474,共5页
In this paper, the generalized (G'/G)-expansion method is used for construct an innovative explicit traveling wave solutions involving parameter of the generalized FitzHugh-Nagumo equation , for some special param... In this paper, the generalized (G'/G)-expansion method is used for construct an innovative explicit traveling wave solutions involving parameter of the generalized FitzHugh-Nagumo equation , for some special parameter where satisfies a second order linear differential equation , , where and are functions of . 展开更多
关键词 FitzHugh-Nagumo EQUATION generalized (g'/g)-expansion method TRAVELINg Wave Solutions
在线阅读 下载PDF
General Solution of Two Generalized Form of Burgers Equation by Using the (<i>G</i><sup>'</sup>/<i>G</i>)-Expansion Method 被引量:1
11
作者 Abdollah Borhanifar Reza Abazari 《Applied Mathematics》 2012年第2期158-168,共11页
In this work, the (G'/G)-expansion method is proposed for constructing more general exact solutions of two general form of Burgers type equation arising in fluid mechanics namely, Burgers-Korteweg-de Vries (Burger... In this work, the (G'/G)-expansion method is proposed for constructing more general exact solutions of two general form of Burgers type equation arising in fluid mechanics namely, Burgers-Korteweg-de Vries (Burgers-KdV) and Burger-Fisher equations. Our work is motivated by the fact that the (G'/G)-expansion method provides not only more general forms of solutions but also periodic and solitary waves. If we set the parameters in the obtained wider set of solutions as special values, then some previously known solutions can be recovered. The method appears to be easier and faster by means of a symbolic computation system. 展开更多
关键词 (g'/g)-expansion method gENERALIZED Burgers-KdV EQUATION gENERALIZED Burgers-Fisher EQUATION Hyperbolic FUNCTION SOLUTIONS Trigonometric FUNCTION SOLUTIONS
在线阅读 下载PDF
Analytical Treatment of the Evolutionary (1 + 1)-Dimensional Combined KdV-mKdV Equation via the Novel (G'/G)-Expansion Method 被引量:1
12
作者 Md. Nur Alam Fethi Bin Muhammad Belgacem M. Ali Akbar 《Journal of Applied Mathematics and Physics》 2015年第12期1571-1579,共9页
The novel (G'/G)-expansion method is a powerful and simple technique for finding exact traveling wave solutions to nonlinear evolution equations (NLEEs). In this article, we study explicit exact traveling wave sol... The novel (G'/G)-expansion method is a powerful and simple technique for finding exact traveling wave solutions to nonlinear evolution equations (NLEEs). In this article, we study explicit exact traveling wave solutions for the (1 + 1)-dimensional combined KdV-mKdV equation by using the novel (G'/G)-expansion method. Consequently, various traveling wave solutions patterns including solitary wave solutions, periodic solutions, and kinks are detected and exhibited. 展开更多
关键词 Novel (g'/g)-expansion method (1 + 1)-Dimensional COMBINED KdV-mKdV EQUATION Kink Patterns Nonlinear Evolution EQUATION Solitary WAVE SOLUTIONS Traveling WAVE SOLUTIONS
在线阅读 下载PDF
Exact solutions for the coupled Klein-Gordon-Schrǒdinger equations using the extended F-expansion method 被引量:1
13
作者 何红生 陈江 杨孔庆 《Chinese Physics B》 SCIE EI CAS CSCD 2005年第10期1926-1931,共6页
The extended F-expansion method or mapping method is used to construct exact solutions for the coupled KleinGordon Schr/Sdinger equations (K-G-S equations) by the aid of the symbolic computation system Mathematica. ... The extended F-expansion method or mapping method is used to construct exact solutions for the coupled KleinGordon Schr/Sdinger equations (K-G-S equations) by the aid of the symbolic computation system Mathematica. More solutions in the Jacobi elliptic function form are obtained, including the single Jacobi elliptic function solutions, combined Jacobi elliptic function solutions, rational solutions, triangular solutions, soliton solutions and combined soliton solutions. 展开更多
关键词 extended F-expansion method exact solutions coupled K-g-S equations Jacobi elliptic function
在线阅读 下载PDF
Exact solutions of the nonlinear differential-difference equations associated with the nonlinear electrical transmission line through a variable-coefficient discrete(G'/G)-expansion method
14
作者 Sadou Abdoulkary Alidou Mohamadou +1 位作者 Ousmanou Dafounansou Serge Yamigno Doka 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第12期117-123,共7页
We investigated exact traveling soliton solutions for the nonlinear electrical transmission line. By applying a concise and straightforward method, the variable-coefficient discrete(G /G)-expansion method, we solve ... We investigated exact traveling soliton solutions for the nonlinear electrical transmission line. By applying a concise and straightforward method, the variable-coefficient discrete(G /G)-expansion method, we solve the nonlinear differential–difference equations associated with the network. We obtain some exact traveling wave solutions which include hyperbolic function solution, trigonometric function solution, rational solutions with arbitrary function, bright as well as dark solutions. 展开更多
关键词 nonlinear transmission line discrete(g /g)-expansion method solitary waves
在线阅读 下载PDF
A Generalized Tanh-Function Type Method and the(G'/G) -Expansion Method for Solving
15
作者 Weimin Zhang 《Applied Mathematics》 2013年第10期11-16,共6页
In this paper a generalized tanh-function type method is proposed by using the idea of the transformed rational function method. We show that the (G'/G)?-expansion method is a special case of the generalized tanh-... In this paper a generalized tanh-function type method is proposed by using the idea of the transformed rational function method. We show that the (G'/G)?-expansion method is a special case of the generalized tanh-function type method, so the (G'/G)?-expansion method is considered as a special deformation application of the transformed rational function method. We demonstrate that all solutions obtained by the (G'/G)?-expansion method were found by the generalized tanh-function type method. As applications, we consider mKdV equation. Compared with the (G'/G) -expansion method, the generalized tanh-function type method gives new and more abundant solutions. 展开更多
关键词 The gENERALIZED TANH-FUNCTION method (g'/g) -expansion method MKDV Equation The Transformed RATIONAL Function
在线阅读 下载PDF
The Basic (<i>G'/G</i>)-Expansion Method for the Fourth Order Boussinesq Equation
16
作者 Hasibun Naher Farah Aini Abdullah 《Applied Mathematics》 2012年第10期1144-1152,共9页
The (G'/G)-expansion method is simple and powerful mathematical tool for constructing traveling wave solutions of nonlinear evolution equations which arise in engineering sciences, mathematical physics and real ti... The (G'/G)-expansion method is simple and powerful mathematical tool for constructing traveling wave solutions of nonlinear evolution equations which arise in engineering sciences, mathematical physics and real time application fields. In this article, we have obtained exact traveling wave solutions of the nonlinear partial differential equation, namely, the fourth order Boussinesq equation involving parameters via the (G'/G)-expansion method. In this method, the general solution of the second order linear ordinary differential equation with constant coefficients is implemented. Further, the solitons and periodic solutions are described through three different families. In addition, some of obtained solutions are described in the figures with the aid of commercial software Maple. 展开更多
关键词 The (g'/g)-expansion method the Fourth Order BOUSSINESQ Equation TRAVELINg Wave Solutions Nonlinear Partial Differntial Equations
在线阅读 下载PDF
A generalization of (G'/G)-expansion method and its application to nonlinear reaction-diffusion equations arising in mathematical biology 被引量:1
17
作者 A. Jabbari J. Manafian Heris +1 位作者 H. Kheiri A. Bekir 《International Journal of Biomathematics》 2014年第3期41-50,共10页
In this paper, by introducing a proper transformation, the (Gr/G)-expansion method is further extended into the nonlinear reaction diffusion equations in mathematical biology whose balancing numbers may be negative ... In this paper, by introducing a proper transformation, the (Gr/G)-expansion method is further extended into the nonlinear reaction diffusion equations in mathematical biology whose balancing numbers may be negative integer. As a result, hyperbolic function solutions and trigonometric function solutions with free parameters are obtained. When the parameters are taken as special values the solitary wave solutions and the periodic wave solutions are also derived from the traveling wave solutions. Moreover, it is observed that the suggested techniques is compatible of such problems. 展开更多
关键词 generalized (gI/g)-expansion method exact solutions nonlinear reaction-diffusion equations.
原文传递
Exact Solutions of (2+1)-Dimensional Boiti-Leon-Pempinelle Equation with (G'/G)-Expansion Method
18
作者 熊守全 夏铁成 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第7期35-37,共3页
In this paper,we construct exact solutions for the (2+1)-dimensional Boiti-Leon-Pempinelle equation byusing the (G'/G)-expansion method,and with the help of Maple.As a result,non-travelling wave solutions with thr... In this paper,we construct exact solutions for the (2+1)-dimensional Boiti-Leon-Pempinelle equation byusing the (G'/G)-expansion method,and with the help of Maple.As a result,non-travelling wave solutions with threearbitrary functions are obtained including hyperbolic function solutions,trigonometric function solutions,and rationalsolutions.This method can be applied to other higher-dimensional nonlinear partial differential equations. 展开更多
关键词 (2+1)-dimensional Boiti-Leon-Pempinelle equation (g′/g)-expansion method hyperbolic function solutions trigonometric function solutions
在线阅读 下载PDF
New Generalized (G'/G)-Expansion Method Applications to Coupled Konno-Oono Equation
19
作者 Md. Nur Alam Fethi Bin Muhammad Belgacem 《Advances in Pure Mathematics》 2016年第3期168-179,共12页
The new generalized (G'/G)-expansion method is one of the powerful and competent methods that appear in recent time for establishing exact solutions to nonlinear evolution equations (NLEEs). We apply the new gener... The new generalized (G'/G)-expansion method is one of the powerful and competent methods that appear in recent time for establishing exact solutions to nonlinear evolution equations (NLEEs). We apply the new generalized (G'/G)-expansion method to solve exact solutions of the new coupled Konno-Oono equation and construct exact solutions expressed in terms of hyperbolic functions, trigonometric functions, and rational functions with arbitrary parameters. The significance of obtained solutions gives credence to the explanation and understanding of related physical phenomena. As a newly developed mathematical tool, this method efficiency for finding exact solutions has been demonstrated through showing its straightforward nature and establishing its ability to handle nonlinearities prototyped by the NLEEs whether in applied mathematics, physics, or engineering contexts. 展开更多
关键词 New generalized (g'/g)-expansion method Coupled Konno-Oono Equations Nonlinear Partial Differential Equation
在线阅读 下载PDF
CdS/g-C_(3)N_(4)复合光催化剂的合成及催化机理研究
20
作者 李子罕 张佳琦 +6 位作者 李世卓 李欣雨 刘少卓 王一豪 郝玉翠 刘剑 李彦华 《无机盐工业》 北大核心 2025年第3期124-132,共9页
以三聚氰胺为原料,通过烧结-超声两步法制备了g-C_(3)N_(4)黄色粉末;再以所制备g-C_(3)N_(4)、硫化钠和乙酸镉为原料,采用水热法成功制备出了CdS纳米颗粒包裹g-C_(3)N_(4)片层结构的CdS/g-C_(3)N_(4)复合光催化剂。采用X射线衍射(XRD)... 以三聚氰胺为原料,通过烧结-超声两步法制备了g-C_(3)N_(4)黄色粉末;再以所制备g-C_(3)N_(4)、硫化钠和乙酸镉为原料,采用水热法成功制备出了CdS纳米颗粒包裹g-C_(3)N_(4)片层结构的CdS/g-C_(3)N_(4)复合光催化剂。采用X射线衍射(XRD)、场发射扫描电子显微镜(FE-SEM)、紫外可见漫反射(UV-Vis-DRS)、X射线荧光光谱(XRF)、X射线光电子能谱(XPS)等对CdS、g-C_(3)N_(4)和CdS/g-C_(3)N_(4)复合光催化剂进行物相组成、微观形貌及物化性能表征。测试结果表明:所制备CdS的微观形貌为纳米颗粒结构,g-C_(3)N_(4)为片层结构;在CdS/g-C_(3)N_(4)复合材料中,g-C_(3)N_(4)片层周围包裹着不规则颗粒CdS,二者紧密结合成了一个整体的复合粉体颗粒。以罗丹明B为目标降解物,以氙灯模拟可见光光源,测试CdS、g-C_(3)N_(4)和CdS/g-C_(3)N_(4)复合材料的光催化性能。结果表明,CdS/g-C_(3)N_(4)复合光催化剂具有良好的光催化性能,当CdS和g-C_(3)N_(4)质量比为1∶5时,复合材料的光催化活性要明显强于单一CdS或g-C_(3)N_(4)样品的催化活性,光照40 min后罗丹明B的降解率可达93.7%,降解过程符合一级动力学方程,其降解速率为6.6×10^(-2) min^(-1)。通过捕获实验分析得到光降解罗丹明B的主要活性基团为羟基自由基,基于机理和降解结果分析,推测CdS和g-C_(3)N_(4)之间应该是形成了Z型异质结。 展开更多
关键词 CdS/g-C_(3)N_(4) 光催化 水热法 合成 催化机理
在线阅读 下载PDF
上一页 1 2 49 下一页 到第
使用帮助 返回顶部