期刊文献+
共找到135篇文章
< 1 2 7 >
每页显示 20 50 100
A Method for Detecting Wide-scale Network Traffic Anomalies
1
作者 Wang Minghua(National Computer Network Emergency Response Technical Team/Coordination Center(CNCERT/CC),Beijing 100029,China) 《ZTE Communications》 2007年第4期19-23,共5页
Network traffic anomalies refer to the traffic changed abnormally and obviously.Local events such as temporary network congestion,Distributed Denial of Service(DDoS)attack and large-scale scan,or global events such as... Network traffic anomalies refer to the traffic changed abnormally and obviously.Local events such as temporary network congestion,Distributed Denial of Service(DDoS)attack and large-scale scan,or global events such as abnormal network routing,can cause network anomalies.Network anomaly detection and analysis are very important to Computer Security Incident Response Teams(CSIRT).But wide-scale traffic anomaly detection requires extracting anomalous modes from large amounts of high-dimensional noise-rich data,and interpreting the modes;so,it is very difficult.This paper proposes a general method based on Principle Component Analysis(PCA)to analyze network anomalies.This method divides the traffic matrix into normal and anomalous subspaces,maps traffic vectors into the normal subspace,gets the distance from detected vector to average normal vector,and detects anomalies based on that distance. 展开更多
关键词 A method for detecting Wide-scale Network Traffic Anomalies DDOS Security PCA
在线阅读 下载PDF
Calculation and application of full-wave airborne transient electromagnetic data in electromagnetic detection 被引量:3
2
作者 JI Yan-ju ZHU Yu +2 位作者 YU Ming-mei LI Dong-sheng GUAN Shan-shan 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第4期1011-1020,共10页
Airborne electromagnetic transient method enjoys the advantages of high-efficiency and the high resolution of electromagnetic anomalies,especially suitable for mining detection around goaf areas and deep exploration o... Airborne electromagnetic transient method enjoys the advantages of high-efficiency and the high resolution of electromagnetic anomalies,especially suitable for mining detection around goaf areas and deep exploration of minerals.In this paper,we calculated the full-wave airborne transient electromagnetic data,according to the result of numerical research,the advantage of switch-off time response in electromagnetic detection was proofed via experiments.Firstly,based on the full-wave airborne transient electromagnetic system developed by Jilin University(JLU-ATEMI),we proposed a method to compute the full-waveform electromagnetic(EM)data of 3D model using the FDTD approach and convolution algorithm,and verify the calculation by the response of homogenous half-space.Then,through comparison of switch-off-time response and off-time response,we studied the effect of ramp time on anomaly detection.Finally,we arranged two experimental electromagnetic detection,the results indicated that the switch-off-time response can reveal the shallow target more effectively,and the full-waveform airborne electromagnetic system is an effective technique for shallow target detection. 展开更多
关键词 airborne electromagnetic transient method full-waveform FDTD approach convolution algorithm anomaly detection
在线阅读 下载PDF
A Novel Probabilistic Hybrid Model to Detect Anomaly in Smart Homes 被引量:1
3
作者 Sasan Saqaeeyan Hamid Haj Seyyed Javadi Hossein Amirkhani 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第12期815-834,共20页
Anomaly detection in smart homes provides support to enhance the health and safety of people who live alone.Compared to the previous studies done on this topic,less attention has been given to hybrid methods.This pape... Anomaly detection in smart homes provides support to enhance the health and safety of people who live alone.Compared to the previous studies done on this topic,less attention has been given to hybrid methods.This paper presents a two-steps hybrid probabilistic anomaly detection model in the smart home.First,it employs various algorithms with different characteristics to detect anomalies from sensory data.Then,it aggregates their results using a Bayesian network.In this Bayesian network,abnormal events are detected through calculating the probability of abnormality given anomaly detection results of base methods.Experimental evaluation of a real dataset indicates the effectiveness of the proposed method by reducing false positives and increasing true positives. 展开更多
关键词 Smart homes sensory data anomaly detection Bayesian networks ensemble method
在线阅读 下载PDF
基于图神经网络的时序信号异常检测方法
4
作者 王婕婷 张泽珑 +1 位作者 李飞江 钱宇华 《西北大学学报(自然科学版)》 北大核心 2025年第2期343-354,共12页
高维时序数据异常检测是指从多元时间序列中识别出偏离整体模式或偏离预期行为的样本点的过程。在高维时序数据中,传感器间潜在的关联关系对于预测或检测任务的性能具有较大影响。图神经网络是一种基于节点的近邻关系学习节点表征的深... 高维时序数据异常检测是指从多元时间序列中识别出偏离整体模式或偏离预期行为的样本点的过程。在高维时序数据中,传感器间潜在的关联关系对于预测或检测任务的性能具有较大影响。图神经网络是一种基于节点的近邻关系学习节点表征的深度模型,能够有效建模传感器间的复杂关联。然而,现有基于图神经网络的异常检测方法大多依赖于单一的相似度度量来捕捉传感器间的关系,不能很好地学习传感器间的依赖关系。此外,在阈值选择时,现有方法使用正常数据中的最大异常得分作为切割阈值,限制了异常事件发生时的检测能力,从而造成较低的召回率。综上,提出了一种基于图神经网络的时序信号异常检测方法,根据传感器的特有特征使用多种相似度度量集成进行图结构学习;其次,将图结构学习方法与图神经网络相结合得到异常得分;最后,通过区间搜索法最优化F-measure指标寻找最优异常切割阈值。在两个真实传感器数据集上进行的实验表明,该方法比基准对比方法取得了较高的F 1值和召回率。 展开更多
关键词 时序异常检测 图结构学习 注意力机制 相似度计算 区间搜索法
在线阅读 下载PDF
Data-Driven Anomaly Diagnosis for Machining Processes 被引量:7
5
作者 Y.C.Liang S.Wang +1 位作者 W.D.Li X.Lu 《Engineering》 SCIE EI 2019年第4期646-652,共7页
To achieve zero-defect production during computer numerical control(CNC)machining processes,it is imperative to develop effective diagnosis systems to detect anomalies efficiently.However,due to the dynamic conditions... To achieve zero-defect production during computer numerical control(CNC)machining processes,it is imperative to develop effective diagnosis systems to detect anomalies efficiently.However,due to the dynamic conditions of the machine and tooling during machining processes,the relevant diagnosis systems currently adopted in industries are incompetent.To address this issue,this paper presents a novel data-driven diagnosis system for anomalies.In this system,power data for condition monitoring are continuously collected during dynamic machining processes to support online diagnosis analysis.To facilitate the analysis,preprocessing mechanisms have been designed to de-noise,normalize,and align the monitored data.Important features are extracted from the monitored data and thresholds are defined to identify anomalies.Considering the dynamic conditions of the machine and tooling during machining processes,the thresholds used to identify anomalies can vary.Based on historical data,the values of thresholds are optimized using a fruit fly optimization(FFO)algorithm to achieve more accurate detection.Practical case studies were used to validate the system,thereby demonstrating the potential and effectiveness of the system for industrial applications. 展开更多
关键词 COMPUTER numerical control MACHINING anomaly detection FRUIT FLY optimization algorithm DATA-DRIVEN method
在线阅读 下载PDF
An Isolation Principle Based Distributed Anomaly Detection Method in Wireless Sensor Networks 被引量:3
6
作者 Zhi-Guo Ding Da-Jun Du Min-Rui Fei 《International Journal of Automation and computing》 EI CSCD 2015年第4期402-412,共11页
Anomaly detection plays an important role in ensuring the data quality in wireless sensor networks(WSNs).The main objective of the paper is to design a light-weight and distributed algorithm to detect the data collect... Anomaly detection plays an important role in ensuring the data quality in wireless sensor networks(WSNs).The main objective of the paper is to design a light-weight and distributed algorithm to detect the data collected from WSNs effectively.This is achieved by proposing a distributed anomaly detection algorithm based on ensemble isolation principle.The new method offers distinctive advantages over the existing methods.Firstly,it does not require any distance or density measurement,which reduces computational burdens significantly.Secondly,considering the spatial correlation characteristic of node deployment in WSNs,local sub-detector is built in each sensor node,which is broadcasted simultaneously to neighbor sensor nodes.A global detector model is then constructed by using the local detector model and the neighbor detector model,which possesses a distributed nature and decreases communication burden.The experiment results on the labeled dataset confirm the effectiveness of the proposed method. 展开更多
关键词 Distributed anomaly detection isolation principle light-weight method ensemble learning wireless sensor networks(WSNs)
原文传递
A two-phase system call arguments attribute analyzing method
7
作者 李红娇 李建华 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2008年第4期573-577,共5页
To detect more attacks aiming at key security data in program behavior-based anomaly detection,the data flow properties were formulated as unary and binary relations on system call arguments.A new method named two-phr... To detect more attacks aiming at key security data in program behavior-based anomaly detection,the data flow properties were formulated as unary and binary relations on system call arguments.A new method named two-phrase analysis(2PA)is designed to analyze the efficient relation dependency,and its description as well as advantages are discussed.During the phase of static analysis,a dependency graph was constructed according to the program's data dependency graph,which was used in the phase of dynamic learning to learn specified binary relations.The constructed dependency graph only stores the information of related arguments and events,thus improves the efficiency of the learning algorithm and reduces the size of learned relation dependencies.Performance evaluations show that the new method is more efficient than existing methods. 展开更多
关键词 program behavior-based anomaly detection system call arguments data flow dependency 2PA method
在线阅读 下载PDF
多尺度特征的工业物联网隐性异常检测方法 被引量:1
8
作者 朱亚丽 李扬 曹冬菊 《太原学院学报(自然科学版)》 2024年第4期56-63,共8页
为了提高工业物联网隐性异常的检测效果,设计了基于多尺度特征的工业物联网隐性异常检测方法。根据工业物联网自身的特性,设定多个数据特征选择标准,并计算最终的特征选择结果。在此基础上,提取出多尺度特征,并计算不同特征的权重值,由... 为了提高工业物联网隐性异常的检测效果,设计了基于多尺度特征的工业物联网隐性异常检测方法。根据工业物联网自身的特性,设定多个数据特征选择标准,并计算最终的特征选择结果。在此基础上,提取出多尺度特征,并计算不同特征的权重值,由此计算特征的重构误差和分类结果,完成对工业物联网数据分类器的设计,并通过计算不同尺度下的检测结果和权重值来实现对工业物联网隐性异常的检测。实验测试表明,所设计方法在实际应用中漏检率较低,检测效果较好。 展开更多
关键词 多尺度特征 工业物联网 隐性异常 异常检测方法
在线阅读 下载PDF
OCTEM法探测地下空间地质病害体的应用研究 被引量:2
9
作者 杨旭东 席振铢 +1 位作者 龙霞 黄基文 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第8期3434-3444,共11页
城镇地下空间地质病害体造成地面塌陷事故时有发生,对人民群众的生命财产安全构成巨大威胁。采用地球物理方法探测和预报地下空间地质病害体是预防城镇地面塌陷事故的重要方案。瞬变电磁法(TEM)是探测地下空间地质病害体的重要方法之一... 城镇地下空间地质病害体造成地面塌陷事故时有发生,对人民群众的生命财产安全构成巨大威胁。采用地球物理方法探测和预报地下空间地质病害体是预防城镇地面塌陷事故的重要方案。瞬变电磁法(TEM)是探测地下空间地质病害体的重要方法之一。等值反磁通瞬变电磁法(OCTEM)采用免接地、小体积、弱耦合的收发一体小型天线,便于在城镇硬化地面及施工空间受限的场地进行快速探测。本文结合理论计算和实际应用来研究OCTEM对地下地质病害体的探测能力。首先基于矢量有限元实现OCTEM三维正演,研究不同地电类型地质病害体的OCTEM响应特征。根据地下地质病害体的电性特征,构建了纯低阻型、纯高阻型、低阻-高阻复合型3类地质病害体地电模型,对比分析不同地电类型的地质病害体的异常响应,并计算包含地质病害体时的响应与不包含地质病害体时的背景响应之间的相对异常。计算结果表明:OCTEM对纯低阻型和低阻-高阻复合型地质病害体比较敏感,对纯高阻型地质病害体相对不敏感。对于低阻型或低阻高阻复合型地质病害体,低阻部分与围岩电阻率差异越大、厚度越大、埋深越浅,则相对异常越大,越容易被探测。随着深度加大,OCTEM探测分辨能力将减小。最后,通过在湖南浏阳某村镇试验剖面探测地下岩溶地质病害体案例,分析OCTEM的探测效果。 展开更多
关键词 等值反磁通瞬变电磁法 探测 地下空间 地质病害体 相对异常
在线阅读 下载PDF
基于有限元法的水下航行器地磁异常模拟研究 被引量:1
10
作者 赵高阳 刘勇 +2 位作者 朱平杰 向冰 周洪娟 《系统工程与电子技术》 EI CSCD 北大核心 2024年第7期2191-2200,共10页
为改进水下航行器磁异常探测技术中磁异常实测数据难获得、现有磁体模型计算精度不高等问题,基于有限元仿真探讨建立无需区分近、远场的高精度混合磁体模型方法。应用有限元数值方法仿真复杂结构水下航行器的空间磁异常分布,以磁场数值... 为改进水下航行器磁异常探测技术中磁异常实测数据难获得、现有磁体模型计算精度不高等问题,基于有限元仿真探讨建立无需区分近、远场的高精度混合磁体模型方法。应用有限元数值方法仿真复杂结构水下航行器的空间磁异常分布,以磁场数值解为收敛目标,建立以偶极子阵元数目、位置及磁矩为参数的均匀磁化椭球体与偶极子阵列混合的航行器磁异常解析模型,采用非线性最小二乘算法求解模型系数。仿真结果表明,基于该模型得到磁异常计算值与全空间内数值解的拟合度较高,测试平面平均误差为3%。该模型在磁场延拓、高精度建模等方面可以进一步应用。 展开更多
关键词 航空磁异常探测 有限元仿真 磁体模拟 数值拟合
在线阅读 下载PDF
基于语义不一致性的网络暴力舆情预警方法 被引量:1
11
作者 叶瀚 胡凯茜 +1 位作者 李欣 孙海春 《情报杂志》 CSSCI 北大核心 2024年第4期135-145,67,共12页
[研究目的]现有网络暴力舆情预警手段对专家知识和先验事件信息存在较大依赖。该文提出一种基于语义不一致性的网络暴力舆情预警方法,以实现对现实情境中网络暴力舆情的有效预警。[研究方法]该文采用网络暴力舆情预警的语义不一致性指... [研究目的]现有网络暴力舆情预警手段对专家知识和先验事件信息存在较大依赖。该文提出一种基于语义不一致性的网络暴力舆情预警方法,以实现对现实情境中网络暴力舆情的有效预警。[研究方法]该文采用网络暴力舆情预警的语义不一致性指数计算方法,并结合时序异常检测方法对语义不一致性异常波动进行监测并预警。收集2022年7月至9月间的微博数据进行模拟预警,验证模型预警能力。[研究结论]实验中平均预警准确率为76.57%,预警覆盖率为60.92%。经验证可实现真实世界条件下至多提前36小时发出预警。实验揭示了网络暴力舆情事件在发展阶段可对整体内容的主题状态产生显著可监测的影响,基于该特性能够实现或增强舆情预警感知能力。 展开更多
关键词 网络暴力 语义不一致性 风险预警 时序异常检测 舆情预警方法
在线阅读 下载PDF
高放废物地质处置新场候选场址地下水位异常值识别方法
12
作者 吉子健 周志超 +2 位作者 赵敬波 季瑞利 张明 《物探与化探》 CAS 2024年第6期1530-1538,共9页
地下水动态监测为高放废物地质处置候选场址的安全评价提供了关键基础数据,但研究发现实际的监测数据中存在较多异常值,严重干扰了对动态过程的准确判断。因此,亟须建立一种高效的方法对异常值进行准确识别。本文基于局部加权回归的时... 地下水动态监测为高放废物地质处置候选场址的安全评价提供了关键基础数据,但研究发现实际的监测数据中存在较多异常值,严重干扰了对动态过程的准确判断。因此,亟须建立一种高效的方法对异常值进行准确识别。本文基于局部加权回归的时间序列分解和最小协方差行列式方法构建了地下水位异常值检测组合模型,使最小协方差行列式方法可以在更独立的残差项中进行异常值检测。结果表明,构建的组合模型相较于最小协方差行列式方法的单一模型,其对异常数据具有更好的敏感性和检测精度;并进一步确定了组合模型的阈值应接近实际的异常值比例,以获取最佳的检测效果;此外,根据新场地段BSQ01、BSQ25、BS35、BS26钻孔的水位数据对组合模型的适用性进行验证,表明其能够准确识别出混淆于大量正常水位数据中的异常值,同时也适用于不同类型异常事件的检测。 展开更多
关键词 时间序列异常检测 STL分解 最小协方差行列式方法 高放废物 地质处置
在线阅读 下载PDF
基于相关性参数选择的飞行数据异常检测 被引量:2
13
作者 钟杰 罗冲 +1 位作者 张恒 苗强 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第5期1738-1745,共8页
随着无人机(UAV)技术的成熟,其在军民领域的应用越来越广泛,安全问题也逐渐受到重视。UAV飞行数据能直接反映其飞行健康状态。针对UAV飞行数据开展异常检测研究是提升UAV整体安全性的重要手段之一。基于此,提出了一种基于相关性参数选... 随着无人机(UAV)技术的成熟,其在军民领域的应用越来越广泛,安全问题也逐渐受到重视。UAV飞行数据能直接反映其飞行健康状态。针对UAV飞行数据开展异常检测研究是提升UAV整体安全性的重要手段之一。基于此,提出了一种基于相关性参数选择与卷积神经网络(CNN)的异常检测方法。利用最大信息系数(MIC)和Pearson相关系数法挖掘参数之间的相关性,并建立相关性飞行参数集合;利用与待检测飞行参数相关的飞行参数数据训练卷积神经网络预测模型,根据模型预测值与真实值之间的残差判定异常。利用真实UAV飞行数据对所提方法进行验证,结果显示:所提方法的假阳率、假阴率、准确率指标均值分别为0%、0.19%、99.6%,证明了方法的有效性。 展开更多
关键词 异常检测 飞行数据 最大信息系数 Pearson相关系数法 卷积神经网络
在线阅读 下载PDF
多辐射场源半航空瞬变电磁法薄层探测能力 被引量:1
14
作者 张莹莹 王玉 马玉龙 《地质与勘探》 CAS CSCD 北大核心 2024年第4期785-799,共15页
多辐射场源半航空瞬变电磁法具有探测深度大、地形适应性强和工作效率高的优点,已逐渐成为当前的研究热点。为了研究其探测能力,本文基于一维正演理论,从多辐射场源布设方式入手,选定典型测点与辐射源组合,通过定义瞬变响应相对异常,分... 多辐射场源半航空瞬变电磁法具有探测深度大、地形适应性强和工作效率高的优点,已逐渐成为当前的研究热点。为了研究其探测能力,本文基于一维正演理论,从多辐射场源布设方式入手,选定典型测点与辐射源组合,通过定义瞬变响应相对异常,分析对比不同模型薄层电阻率、厚度、埋深等参数对薄层探测的影响。结果表明:根据测点位置合理设置发射电流方向可以有针对性地增大采集信号强度,获得形态相对简单的B和dB场响应曲线;与单辐射源相比,多辐射源激励时瞬变响应不仅幅值更大,衰减速度也更快,对大地电阻率的变化更灵敏;B场更适合用于相对异常计算,探讨多辐射场源半航空瞬变电磁法的薄层探测能力,其中x分量的薄层探测能力最强;薄层电阻率与围岩差异越大、厚度越大、埋深越浅,相对异常曲线的幅值越大,薄层越易于分辨;薄层分辨能力与测点位置有关,当测点位于多辐射源内侧时B场各分量相对异常曲线幅值更大,对薄层分辨能力更强。 展开更多
关键词 多辐射场源 电性源 半航空瞬变电磁法 相对异常 薄层探测
在线阅读 下载PDF
Geometric modeling of underground ferromagnetic pipelines for magnetic dipole reconstruction-based magnetic anomaly detection 被引量:5
15
作者 Dandan Zhao Zhiyong Guo +3 位作者 Jian Du Zhongxiang Liu Wei Xu Gaofei Liu 《Petroleum》 CSCD 2020年第2期189-197,共9页
To aid the magnetic anomaly detection(MAD)of underground ferromagnetic pipelines,this paper proposes a geometric modeling method based on the magnetic dipole reconstruction method(MDRM).First,the numerical modeling of... To aid the magnetic anomaly detection(MAD)of underground ferromagnetic pipelines,this paper proposes a geometric modeling method based on the magnetic dipole reconstruction method(MDRM).First,the numerical modeling of basic pipe components such as straight sections,bends and elbows,and tee joints are discussed and the relevant mathematical formulations for these components are derived.Next,after analyzing the function of MDRM and various element division strategies,the sectional division and blocked division methods are introduced and applied to the appropriate pipeline components to determine the volume and center coordinates of each element,establishing the general models for the three typical pipeline components considered.The resulting volume and center coordinates of each component are the fundamental parameters for determining the MAD forwarding of underground ferromagnetic pipelines using the MDRM.Finally,based on the combination and transformation of the basic pipeline components considered,the visualized geometric models of typical pipeline layouts including parallel pipelines,pipelines with elbows,and a pipeline with a tee joint are constructed.The results demonstrate the feasibility of the proposed method of geometric modeling for the MDRM,which can be further applied to the finite element modeling of these and other components when analyzing MAD data.Furthermore,the models with output parameters proposed in this paper establish a foundation for the inversion of MAD. 展开更多
关键词 Magnetic anomaly detection Magnetic dipole reconstruction Segmentation method Pipeline detection Geometric modeling
原文传递
Evasive attacks against autoencoder-based cyberattack detection systems in power systems
16
作者 Yew Meng Khaw Amir Abiri Jahromi +1 位作者 Mohammadreza F.M.Arani Deepa Kundur 《Energy and AI》 EI 2024年第3期126-135,共10页
The digital transformation process of power systems towards smart grids is resulting in improved reliability, efficiency and situational awareness at the expense of increased cybersecurity vulnerabilities. Given the a... The digital transformation process of power systems towards smart grids is resulting in improved reliability, efficiency and situational awareness at the expense of increased cybersecurity vulnerabilities. Given the availability of large volumes of smart grid data, machine learning-based methods are considered an effective way to improve cybersecurity posture. Despite the unquestionable merits of machine learning approaches for cybersecurity enhancement, they represent a component of the cyberattack surface that is vulnerable, in particular, to adversarial attacks. In this paper, we examine the robustness of autoencoder-based cyberattack detection systems in smart grids to adversarial attacks. A novel iterative-based method is first proposed to craft adversarial attack samples. Then, it is demonstrated that an attacker with white-box access to the autoencoder-based cyberattack detection systems can successfully craft evasive samples using the proposed method. The results indicate that naive initial adversarial seeds cannot be employed to craft successful adversarial attacks shedding insight on the complexity of designing adversarial attacks against autoencoder-based cyberattack detection systems in smart grids. 展开更多
关键词 CYBERSECURITY Adversarial attacks anomaly detection Iterative-based methods Substati on automati on
原文传递
基于最大功率点跟踪的分布式光伏电量异常辨识研究
17
作者 翟佳 胡晨同 张翃帆 《电网与清洁能源》 CSCD 北大核心 2024年第7期133-138,145,共7页
在辨识分布式光伏电量异常时,其参数识别特征不稳定,缺少统一的可识别的辨识特征,导致不同电量模式下光伏电量异常辨识结果与实际值相差大,异常数据辨识查全率低。提出一种基于最大功率点跟踪的分布式光伏电量异常辨识方法。分析分布式... 在辨识分布式光伏电量异常时,其参数识别特征不稳定,缺少统一的可识别的辨识特征,导致不同电量模式下光伏电量异常辨识结果与实际值相差大,异常数据辨识查全率低。提出一种基于最大功率点跟踪的分布式光伏电量异常辨识方法。分析分布式光伏电池特性,采用最大功率点跟踪算法,获取与跟踪分布式光伏电量的最大功率点,利用最小二乘法对分布式光伏电量的实测值进行拟合,获取虚增电量检测指标;将虚增电量检测指标与最大功率点进行对比,分辨分布式光伏电量是否存在异常,以达到辨识光伏电量异常的目地。实验结果表明:该方法的异常辨识结果与实际值相差小、异常数据辨识查全率高,实用性强。 展开更多
关键词 最大功率点跟踪 分布式光伏 电量异常辨识 最小二乘法 虚增电量检测指标
在线阅读 下载PDF
Human-machine interactive streaming anomaly detection by online self-adaptive forest
18
作者 Qingyang LI Zhiwen YU +1 位作者 Huang XU Bin GUO 《Frontiers of Computer Science》 SCIE EI CSCD 2023年第2期145-156,共12页
At nomaly detectors are used to distinguish differences between normal and abnormal data,which are usually implemented by evaluating and ranking the anomaly scores of each instance.A static unsupervised streaming anom... At nomaly detectors are used to distinguish differences between normal and abnormal data,which are usually implemented by evaluating and ranking the anomaly scores of each instance.A static unsupervised streaming anomaly detector is difficult to dynamically adjust anomaly score calculation.In real scenarios,anomaly detection often needs to be regulated by human feedback,which benefits adjusting anomaly detectors.In this paper,we propose a human-machine interactive streaming anomaly detection method,named ISPForest,which can be adaptively updated online under the guidance of human feedback.In particular,the feedback will be used to adjust the anomaly score calculation and structure of the detector,ideally attaining more accurate anomaly scores in the future.Our main contribution is to improve the tree-based streaming anomaly detection model that can be updated online from perspectives of anomaly score calculation and model structure.Our approach is instantiated for the powerful class of tree-based streaming anomaly detectors,and we conduct experiments on a range of benchmark datasets.The results demonstrate that the utility of incorporating feedback can improve the performance of anomaly detectors with a few human efforts. 展开更多
关键词 anomaly detection human-machine interaction human feedback random space tree ensemble method
原文传递
生产过程中异常检测的统计方法与应用
19
作者 柯友芳 《化工设计通讯》 CAS 2024年第9期116-118,123,共4页
旨在探索和评估生产过程中异常检测的多种统计方法及其应用。随着工业自动化和智能制造的快速发展,确保生产过程的稳定性和产品质量变得尤为重要。我们通过对“华鲁恒升化工股份有限公司”在生产尿素过程中实施的异常检测策略的案例分析... 旨在探索和评估生产过程中异常检测的多种统计方法及其应用。随着工业自动化和智能制造的快速发展,确保生产过程的稳定性和产品质量变得尤为重要。我们通过对“华鲁恒升化工股份有限公司”在生产尿素过程中实施的异常检测策略的案例分析,应用了一系列统计分析和机器学习技术,包括描述性统计分析、控制图(Shewhart图、CUSUM图、EWMA图)、主成分分析(PCA)和聚类分析,以识别和处理生产过程中的异常情况。研究发现,综合应用这些方法可以有效监控生产流程,及时发现异常,从而提高生产效率和产品质量。此外,我们还讨论了每种方法的优势和局限性,并提出了针对生产过程异常检测的建议。最后,探讨了未来研究方向,包括深度学习在异常检测中的潜力以及跨领域方法的融合研究。 展开更多
关键词 异常检测 统计方法 机器学习 生产过程 控制图 主成分分析 聚类分析
在线阅读 下载PDF
基于波形采样的用电功率异常检测方法研究
20
作者 郑文卓 姚毅 《中国高新科技》 2024年第19期86-88,共3页
常规用电功率异常检测方法由于采用人工检测,导致用电功率异常检测精度低。针对上述问题,提出基于波形采样的用电功率异常检测方法,通过波形采样将获取的异常功率数据转化为数字信号,在此基础上建立用户数据集并将用户数据集进行分类,... 常规用电功率异常检测方法由于采用人工检测,导致用电功率异常检测精度低。针对上述问题,提出基于波形采样的用电功率异常检测方法,通过波形采样将获取的异常功率数据转化为数字信号,在此基础上建立用户数据集并将用户数据集进行分类,从而对构建的用电功率异常检测模型进行建模与优化,最后通过使用卷积自动编码器对用电功率异常检测模型的数据结果进行优化处理,至此用电功率异常检测方法全部设计完成。在实验过程中,通过与其他两种常规用电功率异常检测方法进行对比,得出基于波形采样的用电功率异常检测方法的平均Y值高出0.04和0.05,因此设计方法的检测效果最好、精度最高,能够有效检测用电功率异常情况,加大电力系统运行的安全度。 展开更多
关键词 波形采样 用电功率 功率异常 检测方法 异常检测
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部