期刊文献+
共找到1,543篇文章
< 1 2 78 >
每页显示 20 50 100
Application of the back-error propagation artificial neural network(BPANN) on genetic variants in the PPAR-γ and RXR-α gene and risk of metabolic syndrome in a Chinese Han population 被引量:3
1
作者 Xu Zhao Kang Xu +11 位作者 Hui Shi Jinluo Cheng Jianhua Ma Yanqin Gao Qian Li Xinhua Ye Ying Lu Xiaofang Yu Juan Du Wencong Du Qing Ye Ling Zhou 《The Journal of Biomedical Research》 CAS 2014年第2期114-122,共9页
This study was aimed to explore the associations between the combined effects of several polymorphisms in the PPAR-γ and RXR-α gene and environmental factors with the risk of metabolic syndrome by back-error propaga... This study was aimed to explore the associations between the combined effects of several polymorphisms in the PPAR-γ and RXR-α gene and environmental factors with the risk of metabolic syndrome by back-error propaga- tion artificial neural network (BPANN). We established the model based on data gathered from metabolic syndrome patients (n = 1012) and normal controls (n = 1069) by BPANN. Mean impact value (MIV) for each input variable was calculated and the sequence of factors was sorted according to their absolute MIVs. Generalized multifactor dimensionality reduction (GMDR) confirmed a joint effect of PPAR-9" and RXR-a based on the results from BPANN. By BPANN analysis, the sequences according to the importance of metabolic syndrome risk fac- tors were in the order of body mass index (BMI), serum adiponectin, rs4240711, gender, rs4842194, family history of type 2 diabetes, rs2920502, physical activity, alcohol drinking, rs3856806, family history of hypertension, rs1045570, rs6537944, age, rs17817276, family history of hyperlipidemia, smoking, rs1801282 and rs3132291. However, no polymorphism was statistically significant in multiple logistic regression analysis. After controlling for environmental factors, A1, A2, B1 and B2 (rs4240711, rs4842194, rs2920502 and rs3856806) models were the best models (cross-validation consistency 10/10, P = 0.0107) with the GMDR method. In conclusion, the interaction of the PPAR-γ and RXR-α gene could play a role in susceptibility to metabolic syndrome. A more realistic model is obtained by using BPANN to screen out determinants of diseases of multiple etiologies like metabolic syndrome. 展开更多
关键词 back-error propagation artificial neural network (bpann metabolic syndrome peroxisome prolif-erators activated receptor-γ (PPAR) gene retinoid X receptor-α (RXR-α) gene ADIPONECTIN
在线阅读 下载PDF
Study on the Model of Excessive Staminate Catkin Thinning of Proterandrous Walnut Based on Quadratic Polynomial Regression Equation and BP Artificial Neural Network 被引量:1
2
作者 王贤萍 曹贵寿 +4 位作者 杨晓华 张倩茹 李凯 李鸿雁 段泽敏 《Agricultural Science & Technology》 CAS 2015年第6期1295-1300,共6页
The excessive staminate catkin thinning (emasculation) of proterandrous walnut is an important management measure for improving yield. To improve the excessive staminate catkin thinning efficiency, the model of quad... The excessive staminate catkin thinning (emasculation) of proterandrous walnut is an important management measure for improving yield. To improve the excessive staminate catkin thinning efficiency, the model of quadratic polynomial regression equation and BP artificial neural network was developed. The effects of ethephon, gibberel in and mepiquat on shedding rate of staminate catkin of pro-terandrous walnut were investigated by modeling field test. Based on the modeling test results, the excessive staminate catkin thinning model of quadratic polynomial regression equation and BP artificial neural network was established, and it was validated by field test next year. The test data were divided into training set, vali-dation set and test set. The total 20 sets of data obtained from the modeling field test were randomly divided into training set (17) and validation set (3) by central composite design (quadric rotational regression test design), and the data obtained from the next-year field test were divided into the test set. The topological struc-ture of BP artificial neural network was 3-5-1. The results showed that the pre-diction errors of BP neural network for samples from the validation set were 1.355 0%, 0.429 1% and 0.353 8%, respectively; the difference between the predicted value by the BP neural network and validated value by field test was 2.04%, and the difference between the predicted value by the regression equation and validated value by field test was 3.12%; the prediction accuracy of BP neural network was over 1.0% higher than that of regression equation. The effective combination of quadratic polynomial stepwise regression and BP artificial neural network wil not only help to determine the effect of independent parameter but also improve the prediction accuracy. 展开更多
关键词 WALNUT THINNING bp artificial neural network Regression PREDICTION
在线阅读 下载PDF
Adaptive fuze-warhead coordination method based on BP artificial neural network 被引量:3
3
作者 Peng Hou Yang Pei Yu-xue Ge 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第11期117-133,共17页
The appropriate fuze-warhead coordination method is important to improve the damage efficiency of air defense missiles against aircraft targets. In this paper, an adaptive fuze-warhead coordination method based on the... The appropriate fuze-warhead coordination method is important to improve the damage efficiency of air defense missiles against aircraft targets. In this paper, an adaptive fuze-warhead coordination method based on the Back Propagation Artificial Neural Network(BP-ANN) is proposed, which uses the parameters of missile-target intersection to adaptively calculate the initiation delay. The damage probabilities at different radial locations along the same shot line of a given intersection situation are calculated, so as to determine the optimal detonation position. On this basis, the BP-ANN model is used to describe the complex and highly nonlinear relationship between different intersection parameters and the corresponding optimal detonating point position. In the actual terminal engagement process, the fuze initiation delay is quickly determined by the constructed BP-ANN model combined with the missiletarget intersection parameters. The method is validated in the case of the single-shot damage probability evaluation. Comparing with other fuze-warhead coordination methods, the proposed method can produce higher single-shot damage probability under various intersection conditions, while the fuzewarhead coordination effect is less influenced by the location of the aim point. 展开更多
关键词 Aircraft vulnerability Fuze-warhead coordination bp artificial neural network Damage probability Initiation delay
在线阅读 下载PDF
PREDICTION OF FLOW STRESS OF HIGH-SPEED STEEL DURING HOT DEFORMATION BY USING BP ARTIFICIAL NEURAL NETWORK 被引量:2
4
作者 J. T. Liu H.B. Chang +1 位作者 R.H. Wu T. Y. Hsu(Xu Zuyao) and X.R. Ruan( 1)Department of Plasticity Technology, Shanghai Jiao Tong University, Shanghai 200030, China 2)School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第1期394-400,共7页
The hot deformation behavior of TI (18W-4Cr-1V) high-speed steel was investigated by means of continuous compression tests performed on Gleeble 1500 thermomechan- ical simulator in a wide range of tempemtures (950℃... The hot deformation behavior of TI (18W-4Cr-1V) high-speed steel was investigated by means of continuous compression tests performed on Gleeble 1500 thermomechan- ical simulator in a wide range of tempemtures (950℃-1150℃) with strain rotes of 0.001s-1-10s-1 and true strains of 0-0. 7. The flow stress at the above hot defor- mation conditions is predicted by using BP artificial neural network. The architecture of network includes there are three input parameters:strain rate,temperature T and true strain , and just one output parameter, the flow stress ,2 hidden layers are adopted, the first hidden layer includes 9 neurons and second 10 negroes. It has been verified that BP artificial neural network with 3-9-10-1 architecture can predict flow stress of high-speed steel during hot deformation very well. Compared with the prediction method of flow stress by using Zaped-Holloman parumeter and hyperbolic sine stress function, the prediction method by using BP artificial neurul network has higher efficiency and accuracy. 展开更多
关键词 T1 high-speed steel flow stress prediction of flow stress back propagation (bp) artificial neural network (ANN)
在线阅读 下载PDF
Prediction of 2A70 aluminum alloy flow stress based on BP artificial neural network 被引量:3
5
作者 刘芳 单德彬 +1 位作者 吕炎 杨玉英 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2004年第4期368-371,共4页
The hot deformation behavior of 2A70 aluminum alloy was investigated by means of isothermal compression tests performed on a Gleeble-1500 thermal simulator over 360~480 ℃ with strain rates in the range of 0.01~1 s-... The hot deformation behavior of 2A70 aluminum alloy was investigated by means of isothermal compression tests performed on a Gleeble-1500 thermal simulator over 360~480 ℃ with strain rates in the range of 0.01~1 s-1 and the largest deformation up to 60%. On the basis of experiments, a BP artificial neural network (ANN) model was constructed to predict 2A70 aluminum alloy flow stress. True strain, strain rates and temperatures were input to the network, and flow stress was the only output. The comparison between predicted values and experimental data showed that the relative error for the trained model was less than ±3% for the sampled data while it was less than ±6% for the non-sampled data. Furthermore, the neural network model gives better results than nonlinear regression method. It is evident that the model constructed by BP ANN can be used to accurately predict the 2A70 alloy flow stress. 展开更多
关键词 A70 aluminum alloy flow stress bp artificial neural network PREDICTION
在线阅读 下载PDF
Combining the genetic algorithms with artificial neural networks for optimization of board allocating 被引量:2
6
作者 曹军 张怡卓 岳琪 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第1期87-88,共2页
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa... This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum. 展开更多
关键词 artificial neural network Genetic algorithms Back propagation model (bp model) OPTIMIZATION
在线阅读 下载PDF
STUDY ON ARTIFICIAL NEURAL NETWORK FORECASTING METHOD OF WATER CONSUMPTION PER HOUR 被引量:5
7
作者 刘洪波 张宏伟 +1 位作者 田林 王新芳 《Transactions of Tianjin University》 EI CAS 2001年第4期233-237,共5页
An artificial neural network (ANN) short term forecasting model of consumption per hour was built based on seasonality,trend and randomness of a city period of time water consumption series.Different hidden layer no... An artificial neural network (ANN) short term forecasting model of consumption per hour was built based on seasonality,trend and randomness of a city period of time water consumption series.Different hidden layer nodes,same inputs and forecasting data were selected to train and forecast and then the relative errors were compared so as to confirm the NN structure.A model was set up and used to forecast concretely by Matlab.It is tested by examples and compared with the result of time series trigonometric function analytical method.The result indicates that the prediction errors of NN are small and the velocity of forecasting is fast.It can completely meet the actual needs of the control and run of the water supply system. 展开更多
关键词 artificial neural network consumption per hour FORECAST bp algorithm MATLAB
在线阅读 下载PDF
Adaptive prediction system of sintering through point based on self-organize artificial neural network 被引量:5
8
作者 冯其明 李 桃 +1 位作者 范晓慧 姜 涛 《中国有色金属学会会刊:英文版》 CSCD 2000年第6期804-807,共4页
A soft sensing method of burning through point (BTP) was described and a new predictive parameter—the mathematics inflexion point of waste gas temperature curve in the middle of the strand was proposed. The artificia... A soft sensing method of burning through point (BTP) was described and a new predictive parameter—the mathematics inflexion point of waste gas temperature curve in the middle of the strand was proposed. The artificial neural network was used in predicting BTP, modification on backpropagation algorithm was made in order to improve the convergence and self organize the hidden layer neurons. The adaptive prediction system developed on these techniques shows its characters such as fast, accuracy, less dependence on production data. The prediction of BTP can be used as operation guidance or control parameter.[ 展开更多
关键词 SINTERING process BURNING through POINT prediction artificial neural network bp algorith
在线阅读 下载PDF
Proton exchange membrane fuel cells modeling based on artificial neural networks 被引量:4
9
作者 YudongTian XinjianZhu GuangyiCao 《Journal of University of Science and Technology Beijing》 CSCD 2005年第1期72-77,共6页
To understand the complexity of the mathematical models of a proton exchange membrane fuel cell (PEMFC) and their shortage of practical PEMFC control, the PEMFC complex mechanism and the existing PEMFC models are anal... To understand the complexity of the mathematical models of a proton exchange membrane fuel cell (PEMFC) and their shortage of practical PEMFC control, the PEMFC complex mechanism and the existing PEMFC models are analyzed, and artificial neural networks based PEMFC modeling is advanced. The structure, algorithm, training and simulation of PEMFC modeling based on improved BP networks are given out in detail. The computer simulation and conducted experiment verify that this model is fast and accurate, and can be used as a suitable operational model for PEMFC real-time control. 展开更多
关键词 fuel cells proton exchange membrane artificial neural networks improved bp algorithm MODELING
在线阅读 下载PDF
Development of Al_2O_3/TiN Ceramie Cutting Tool Materials by Artificial Neural Networks 被引量:2
10
作者 Ning FAM, Xiangbo ZE and Zihui GAOSchool of Mechanical Engineering, Jinan University, Jinan 250022, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第6期797-800,共4页
The artificial neural networks (ANN) which have broad application were proposed to develop multiphase ceramie cutting tool materials. Based on the back propagation algorithm of the forward multilayer perceptron, the m... The artificial neural networks (ANN) which have broad application were proposed to develop multiphase ceramie cutting tool materials. Based on the back propagation algorithm of the forward multilayer perceptron, the models to predict volume content of composition in particie reinforced ceramies are established. The Al2O3/TiN ceramie cutting tool material was developed by ANN, whose mechanicai properties fully satisfy the cutting requirements. 展开更多
关键词 Multiphase ceramies artificial neural network bp algorithm
在线阅读 下载PDF
Artificial Neural Network and Full Factorial Design Assisted AT-MRAM on Fe Oxides, Organic Materials, and Fe/Mn Oxides in Surficial Sediments 被引量:1
11
作者 GAO Qian WANG Zhi-zeng WANG Qian LI Shan-shan LI Yu 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2011年第6期944-948,共5页
Artificial neural network(ANN) and full factorial design assisted atrazine(AT) multiple regression adsorption model(AT-MRAM) were developed to analyze the adsorption capability of the main components in the surf... Artificial neural network(ANN) and full factorial design assisted atrazine(AT) multiple regression adsorption model(AT-MRAM) were developed to analyze the adsorption capability of the main components in the surficial sediments(SSs). Artificial neural network was used to build a model(the determination coefficient square r2 is 0.9977) to describe the process of atrazine adsorption onto SSs, and then to predict responses of the full factorial design. Based on the results of the full factorial design, the interactions of the main components in SSs on AT adsorption were investigated through the analysis of variance(ANOVA), F-test and t-test. The adsorption capability of the main components in SSs for AT was calculated via a multiple regression adsorption model(MRAM). The results show that the greatest contribution to the adsorption of AT on a molar basis was attributed to Fe/Mn(–1.993 μmol/mol). Organic materials(OMs) and Fe oxides in SSs are the important adsorption sites for AT, and the adsorption capabilities are 1.944 and 0.418 μmol/mol, respectively. The interaction among the non-residual components(Fe, Mn oxides and OMs) in SSs interferes in the adsorption of AT that shouldn’t be neglected, revealing the significant contribution of the interaction among non-residual components to controlling the behavior of AT in aquatic environments. 展开更多
关键词 Back propagation(bp artificial neural network Full factorial design Fe/Mn oxide Organic material ATRAZINE Interaction
在线阅读 下载PDF
Application of artificial neural network to calculation of solitary wave run-up 被引量:1
12
作者 You-xing WEI Deng-ting WANG Qing-jun LIU 《Water Science and Engineering》 EI CAS 2010年第3期304-312,共9页
The prediction of solitary wave run-up has important practical significance in coastal and ocean engineering, but the calculation precision is limited in the existing models. For improving the calculation precision, a... The prediction of solitary wave run-up has important practical significance in coastal and ocean engineering, but the calculation precision is limited in the existing models. For improving the calculation precision, a solitary wave run-up calculation model was established based on artificial neural networks in this study. A back-propagation (BP) network with one hidden layer was adopted and modified with the additional momentum method and the auto-adjusting learning factor. The model was applied to calculation of solitary wave run-up. The correlation coefficients between the neural network model results and the experimental values was 0.996 5. By comparison with the correlation coefficient of 0.963 5, between the Synolakis formula calculation results and the experimental values, it is concluded that the neural network model is an effective method for calculation and analysis of solitary wave ran-up. 展开更多
关键词 solitary wave run-up artificial neural network back-propagation bp network additional momentum method auto-adjusting learning factor
在线阅读 下载PDF
Preparation of ZrB_2-SiC Powders via Carbothermal Reduction of Zircon and Prediction of Product Composition by Back-Propagation Artificial Neural Network 被引量:1
13
作者 LIU Jianghao DU Shuang +2 位作者 LI Faliang ZHANG Haijun ZHANG Shaoweia 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第5期1062-1069,共8页
Phase pure ZrB2-SiC composite powders were prepared after 1 450℃/3 h via carbothermal reduction route,by using ZrSiO4,B2O3 and carbon as the raw materials.The influences of firing temperature as well as the type and ... Phase pure ZrB2-SiC composite powders were prepared after 1 450℃/3 h via carbothermal reduction route,by using ZrSiO4,B2O3 and carbon as the raw materials.The influences of firing temperature as well as the type and amount of additive on the phase composition of final products were detailedly investigated.The results indicated that the onset formation temperature of ZrB2-SiC was reduced to 1 400℃by the present conditions,and oxide additive(including CoSO4·7H2O,Y2O3 and TiO2)was effective in enhancing the decomposition of raw ZrSiO4,therefore accelerating the synthesis of ZrB2-SiC.Moreover,microstructural observation showed that the as-prepared ZrB2 and SiC respectively had well-defined hexagonal columnar and fibrous morphology.Furthermore,the methodology of back-propagation artificial neural networks(BP-ANNs)was adopted to establish a model for predicting the reaction extent(e g,the content of ZrB2-SiC in final product)in terms of various processing conditions.The results predicted by the as-established BP-ANNs model matched well with that of testing experiment(with a mean square error in 10^(-3) degree),verifying good effectiveness of the proposed strategy. 展开更多
关键词 ZrB2-SiC powders carbothermal reduction back-propagation artificial neural networks bp-ANNs) composition prediction
在线阅读 下载PDF
ARTIFICIAL NEURAL NETWORK MODEL OF CONSTITUTIVE RELATIONSHIP FOR 2A70 ALUMINUM ALLOY
14
作者 F. Liu D.B. Shan Y. Lu Y. Y. Yang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2005年第6期719-723,共5页
The hat deformation behavior of 2A70 aluminum alloy was investigated by means of isothermal compression tests performed on a Gleeble-1500 thermal simulator over a wide range of temperatures 360-480℃ with strain rates... The hat deformation behavior of 2A70 aluminum alloy was investigated by means of isothermal compression tests performed on a Gleeble-1500 thermal simulator over a wide range of temperatures 360-480℃ with strain rates of 0.01-1s^-1 and the largest deformation of 60%, and the true stress of the material was obtained under the above-mentioned conditions. The experimental results shows that 2A70 aluminum alloy is a kind of aluminum alloy with the property of dynamic recovery; its flow stress declines with the increase of temperature, while its flow stress increases with the increase of strain rates. On the basis of experiments, the constitutive relationship of the 2A70 aluminum alloy was constructed using a BP artificial neural network. Comparison of the predicted values with the experimental data shows that the relative error of the trained model is less than ±3% for the sampled data while it is less than ±6% for the nonsampled data. It is evident that the model constructed by BP ANN can accurately predict the flow stress of the 2A70 alloy. 展开更多
关键词 2A70 aluminum alloy flow stress constitutive relationship bp artificial neural network
在线阅读 下载PDF
基于BP神经网络的矿井变压器在线监测系统研究
15
作者 武彦生 《山东煤炭科技》 2025年第2期156-160,169,共6页
针对阳泉市新景矿煤业有限公司使用的矿井变压器传统监测手段存在效率较低、智能化不足、劳动强度大、现场监控信号失真等问题,在分析了矿井变压器常见故障和异常特征的基础上,基于BP神经网络理论设计一种矿井变压器在线监测系统,完成... 针对阳泉市新景矿煤业有限公司使用的矿井变压器传统监测手段存在效率较低、智能化不足、劳动强度大、现场监控信号失真等问题,在分析了矿井变压器常见故障和异常特征的基础上,基于BP神经网络理论设计一种矿井变压器在线监测系统,完成硬件系统选型和软件控制系统设计,实现对变压器局部放电信号在线集中监测,准确识别声音异常、温度异常、过载故障及漏油故障。经在阳泉市新景矿井下2^(#)变压器进行现场安装和调试后表明,提出的矿井变压器在线监测系统可准确识别设备异常,由以太网将现场信号发送到上位机监控系统,实现了对矿井变压器的集中监测和远程故障诊断,响应时间仅为1.83 s,故障识别精度高,故障定位准确,取得了满意的应用效果,为后期实现矿井变压器的无人值守和远程运维提供应用参考。 展开更多
关键词 bp神经网络 人工智能 矿井变压器 在线监测 远程运维
在线阅读 下载PDF
基于粒子群优化BP神经网络的水质监测方法研究
16
作者 闫佳 刘倩男 刘诚 《现代信息科技》 2025年第3期153-156,163,共5页
近年来,随着人工智能应用范围的逐渐扩大,各行各业都与人工智能存在或多或少的联系。传统的水质监测方法包括人工采样与实验室分析、现场检测和遥感技术等,这些方法存在时效性差、覆盖范围有限、数据不连续且成本高昂等问题。神经网络... 近年来,随着人工智能应用范围的逐渐扩大,各行各业都与人工智能存在或多或少的联系。传统的水质监测方法包括人工采样与实验室分析、现场检测和遥感技术等,这些方法存在时效性差、覆盖范围有限、数据不连续且成本高昂等问题。神经网络的出现大幅提升了传统技术在预测和数据处理方面的效果。在此基础上,通过粒子群算法对BP神经网络进行优化(PSO-BP),结果显示优化后的模型具有更高的准确度和更小的误差。这不仅进一步提高了水质监测的准确性和时效性,还显著降低了监测成本,节省了人力、物力和财力,为水质监测提供了一种新的技术手段。 展开更多
关键词 人工智能 水质监测 粒子群算法 bp神经网络
在线阅读 下载PDF
露天矿边坡监测中的小波滤噪与BPANN预测 被引量:5
17
作者 杨凤芸 徐茂林 郭兆鹏 《矿冶工程》 CAS CSCD 北大核心 2013年第6期1-5,共5页
针对边坡变形量预测难的问题,将小波分析与BP神经网络预测相结合,采用小波变换对边坡变形监测数据进行信噪分离,进而消除观测误差,通过BP神经网络预测模型BPANN对处理后数据进行再处理,对边坡变形量以及变形趋势进行预测。进而提出了一... 针对边坡变形量预测难的问题,将小波分析与BP神经网络预测相结合,采用小波变换对边坡变形监测数据进行信噪分离,进而消除观测误差,通过BP神经网络预测模型BPANN对处理后数据进行再处理,对边坡变形量以及变形趋势进行预测。进而提出了一种基于小波变换和BPANN模型对露天矿边坡变形监测数据进行处理分析的方法,并在鞍山某露天矿进行了实际应用。实例结果表明:利用小波去噪与BPANN模型预测的监测点精度达到3 mm,满足二等变形监测的要求,数据处理简便,在露天矿边坡变形监测数据的消噪与预测中具有实际应用价值。 展开更多
关键词 露天矿 小波变换 bpann(反传人工神经网络) 边坡变形 变形预测 精度分析
在线阅读 下载PDF
BP神经网络预测冲击强化45钢的中温热稳定性
18
作者 姬帅 张佳乐 王海丽 《热加工工艺》 北大核心 2024年第23期159-164,共6页
室温下采用自由落体式对正火态45钢进行冲击强化,对冲击强化正火态45钢进行中温时效处理,分别加热至450、550、650℃,每组温度均保温10、20、30、40 min,同时对各组试样进行显微硬度测试,并对加热至650℃的4种试样进行显微组织观察;以... 室温下采用自由落体式对正火态45钢进行冲击强化,对冲击强化正火态45钢进行中温时效处理,分别加热至450、550、650℃,每组温度均保温10、20、30、40 min,同时对各组试样进行显微硬度测试,并对加热至650℃的4种试样进行显微组织观察;以试样的实际状态参量作为学习样本对3层BP神经网络进行训练。结果表明:BPANN能够对冲击强化正火态45钢的中温热稳定性进行预测,且误差可以控制在3%~6%;BPANN的预测值均大于实测值,但是预测值的变化趋势与实测值的变化趋势一致,网络的预测精度可以通过提高误差函数的收敛速率来得到提高。通过对650℃试样显微组织的观察,可以判定网络的输入层涉及的相关内容能让BPANN的预测结果反映出材料的真实状态。本研究可以降低实验成本、减少实验数量,有助于对冲击强化正火态45钢在其他加热温度下的热稳定性进行预测。 展开更多
关键词 人工神经网络 bp算法 冲击强化 正火态45钢 中温热稳定性
在线阅读 下载PDF
基于BP神经网络的储层渗透率预测方法研究
19
作者 高雅田 张鹏 《计算机与数字工程》 2024年第5期1437-1441,共5页
传统的间接解释法预测主要采用线性回归方法进行渗透率预测,但此方法存在一个极大的缺点,因为所有数据不一定都是线性关系故采用线性回归方式预测精确度差别较大。针对此问题论文提出基于BP神经网络的储层渗透率预测方法对储层存在的大... 传统的间接解释法预测主要采用线性回归方法进行渗透率预测,但此方法存在一个极大的缺点,因为所有数据不一定都是线性关系故采用线性回归方式预测精确度差别较大。针对此问题论文提出基于BP神经网络的储层渗透率预测方法对储层存在的大多数非线性关系数据进行预测。我们首先对选取的原始测井数据进行数据清洗,数据归一化处理;然后,采用BP神经网络算法进行数据特征分析计算,最后使用岩性剖面解释数据验证预测结果。论文采用基于BP神经网络利用测井曲线对储层渗透率预测的方法对松辽盆地构造区某井进行实验,达到了渗透率平均相对预测误差减小、精度大大提高,并且满足测井解释储层参数精度要求。 展开更多
关键词 bp神经网络 储层参数 人工智能
在线阅读 下载PDF
Application of Neural Network in Fault Location of Optical Transport Network 被引量:5
20
作者 Tianyang Liu Haoyuan Mei +1 位作者 Qiang Sun Huachun Zhou 《China Communications》 SCIE CSCD 2019年第10期214-225,共12页
Due to the increasing variety of information and services carried by optical networks, the survivability of network becomes an important problem in current research. The fault location of OTN is of great significance ... Due to the increasing variety of information and services carried by optical networks, the survivability of network becomes an important problem in current research. The fault location of OTN is of great significance for studying the survivability of optical networks. Firstly, a three-channel network model is established and analyzing common alarm data, the fault monitoring points and common fault points are carried out. The artificial neural network is introduced into the fault location field of OTN and it is used to judge whether the possible fault point exists or not. But one of the obvious limitations of general neural networks is that they receive a fixedsize vector as input and produce a fixed-size vector as the output. Not only that, these models is even fixed for mapping operations (for example, the number of layers in the model). The difference between the recurrent neural network and general neural networks is that it can operate on the sequence. In spite of the fact that the gradient disappears and the gradient explodes still exist in the neural network, the method of gradient shearing or weight regularization is adopted to solve this problem, and choose the LSTM (long-short term memory networks) to locate the fault. The output uses the concept of membership degree of fuzzy theory to express the possible fault point with the probability from 0 to 1. Priority is given to the treatment of fault points with high probability. The concept of F-Measure is also introduced, and the positioning effect is measured by using location time, MSE and F-Measure. The experiment shows that both LSTM and BP neural network can locate the fault of optical transport network well, but the overall effect of LSTM is better. The localization time of LSTM is shorter than that of BP neural network, and the F1-score of LSTM can reach 0.961566888396156 after 45 iterations, which meets the accuracy and real-time requirements of fault location. Therefore, it has good application prospect and practical value to introduce neural network into the fault location field of optical transport network. 展开更多
关键词 optical transport networks failure localization artificial neural network longshort TERM memory network bp neural network F1-Measure
在线阅读 下载PDF
上一页 1 2 78 下一页 到第
使用帮助 返回顶部