With the rise of remote collaboration,the demand for advanced storage and collaboration tools has rapidly increased.However,traditional collaboration tools primarily rely on access control,leaving data stored on cloud...With the rise of remote collaboration,the demand for advanced storage and collaboration tools has rapidly increased.However,traditional collaboration tools primarily rely on access control,leaving data stored on cloud servers vulnerable due to insufficient encryption.This paper introduces a novel mechanism that encrypts data in‘bundle’units,designed to meet the dual requirements of efficiency and security for frequently updated collaborative data.Each bundle includes updated information,allowing only the updated portions to be reencrypted when changes occur.The encryption method proposed in this paper addresses the inefficiencies of traditional encryption modes,such as Cipher Block Chaining(CBC)and Counter(CTR),which require decrypting and re-encrypting the entire dataset whenever updates occur.The proposed method leverages update-specific information embedded within data bundles and metadata that maps the relationship between these bundles and the plaintext data.By utilizing this information,the method accurately identifies the modified portions and applies algorithms to selectively re-encrypt only those sections.This approach significantly enhances the efficiency of data updates while maintaining high performance,particularly in large-scale data environments.To validate this approach,we conducted experiments measuring execution time as both the size of the modified data and the total dataset size varied.Results show that the proposed method significantly outperforms CBC and CTR modes in execution speed,with greater performance gains as data size increases.Additionally,our security evaluation confirms that this method provides robust protection against both passive and active attacks.展开更多
The increasing use of cloud-based devices has reached the critical point of cybersecurity and unwanted network traffic.Cloud environments pose significant challenges in maintaining privacy and security.Global approach...The increasing use of cloud-based devices has reached the critical point of cybersecurity and unwanted network traffic.Cloud environments pose significant challenges in maintaining privacy and security.Global approaches,such as IDS,have been developed to tackle these issues.However,most conventional Intrusion Detection System(IDS)models struggle with unseen cyberattacks and complex high-dimensional data.In fact,this paper introduces the idea of a novel distributed explainable and heterogeneous transformer-based intrusion detection system,named INTRUMER,which offers balanced accuracy,reliability,and security in cloud settings bymultiplemodulesworking together within it.The traffic captured from cloud devices is first passed to the TC&TM module in which the Falcon Optimization Algorithm optimizes the feature selection process,and Naie Bayes algorithm performs the classification of features.The selected features are classified further and are forwarded to the Heterogeneous Attention Transformer(HAT)module.In this module,the contextual interactions of the network traffic are taken into account to classify them as normal or malicious traffic.The classified results are further analyzed by the Explainable Prevention Module(XPM)to ensure trustworthiness by providing interpretable decisions.With the explanations fromthe classifier,emergency alarms are transmitted to nearby IDSmodules,servers,and underlying cloud devices for the enhancement of preventive measures.Extensive experiments on benchmark IDS datasets CICIDS 2017,Honeypots,and NSL-KDD were conducted to demonstrate the efficiency of the INTRUMER model in detecting network trafficwith high accuracy for different types.Theproposedmodel outperforms state-of-the-art approaches,obtaining better performance metrics:98.7%accuracy,97.5%precision,96.3%recall,and 97.8%F1-score.Such results validate the robustness and effectiveness of INTRUMER in securing diverse cloud environments against sophisticated cyber threats.展开更多
Cloud detection is a critical preprocessing step in remote sensing image processing, as the presence of clouds significantly affects the accuracy of remote sensing data and limits its applicability across various doma...Cloud detection is a critical preprocessing step in remote sensing image processing, as the presence of clouds significantly affects the accuracy of remote sensing data and limits its applicability across various domains. This study presents an enhanced cloud detection method based on the U-Net architecture, designed to address the challenges of multi-scale cloud features and long-range dependencies inherent in remote sensing imagery. A Multi-Scale Dilated Attention (MSDA) module is introduced to effectively integrate multi-scale information and model long-range dependencies across different scales, enhancing the model’s ability to detect clouds of varying sizes. Additionally, a Multi-Head Self-Attention (MHSA) mechanism is incorporated to improve the model’s capacity for capturing finer details, particularly in distinguishing thin clouds from surface features. A multi-path supervision mechanism is also devised to ensure the model learns cloud features at multiple scales, further boosting the accuracy and robustness of cloud mask generation. Experimental results demonstrate that the enhanced model achieves superior performance compared to other benchmarked methods in complex scenarios. It significantly improves cloud detection accuracy, highlighting its strong potential for practical applications in cloud detection tasks.展开更多
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base...In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.展开更多
The ease of accessing a virtually unlimited pool of resources makes Infrastructure as a Service (IaaS) clouds an ideal platform for running data-intensive workflow applications comprising hundreds of computational tas...The ease of accessing a virtually unlimited pool of resources makes Infrastructure as a Service (IaaS) clouds an ideal platform for running data-intensive workflow applications comprising hundreds of computational tasks. However, executing scientific workflows in IaaS cloud environments poses significant challenges due to conflicting objectives, such as minimizing execution time (makespan) and reducing resource utilization costs. This study responds to the increasing need for efficient and adaptable optimization solutions in dynamic and complex environments, which are critical for meeting the evolving demands of modern users and applications. This study presents an innovative multi-objective approach for scheduling scientific workflows in IaaS cloud environments. The proposed algorithm, MOS-MWMC, aims to minimize total execution time (makespan) and resource utilization costs by leveraging key features of virtual machine instances, such as a high number of cores and fast local SSD storage. By integrating realistic simulations based on the WRENCH framework, the method effectively dimensions the cloud infrastructure and optimizes resource usage. Experimental results highlight the superiority of MOS-MWMC compared to benchmark algorithms HEFT and Max-Min. The Pareto fronts obtained for the CyberShake, Epigenomics, and Montage workflows demonstrate closer proximity to the optimal front, confirming the algorithm’s ability to balance conflicting objectives. This study contributes to optimizing scientific workflows in complex environments by providing solutions tailored to specific user needs while minimizing costs and execution times.展开更多
The impact of aerosols on clouds,which remains one of the largest aspects of uncertainty in current weather forecasting and climate change research,can be influenced by various factors,such as the underlying surface t...The impact of aerosols on clouds,which remains one of the largest aspects of uncertainty in current weather forecasting and climate change research,can be influenced by various factors,such as the underlying surface type,cloud type,cloud phase,and aerosol type.To explore the impact of different underlying surfaces on the effect of aerosols on cloud development,this study focused on the Yangtze River Delta(YRD)and its offshore regions(YRD sea)for a comparative analysis based on multi-source satellite data,while also considering the variations in cloud type and cloud phase.The results show lower cloud-top height and depth of single-layer clouds over the ocean than land,and higher liquid cloud in spring over the ocean.Aerosols are found to enhance the cumulus cloud depth through microphysical effects,which is particularly evident over the ocean.Aerosols are also found to decrease the cloud droplet effective radius in the ocean region and during the mature stage of cloud development in the land region,while opposite results are found during the early stage of cloud development in the land region.The quantitative results indicate that the indirect effect is positive(0.05)in the land region at relatively high cloud water path,which is smaller than that in the ocean region(0.11).The findings deepen our understanding of the influence aerosols on cloud development and the mechanisms involved,which could then be applied to improve the ability to simulate cloud-associated weather processes.展开更多
Pronounced climatic differences occur over subtropical South China(SC)and tropical South China Sea(SCS)and understanding the key cloud-radiation characteristics is essential to simulating East Asian climate.This study...Pronounced climatic differences occur over subtropical South China(SC)and tropical South China Sea(SCS)and understanding the key cloud-radiation characteristics is essential to simulating East Asian climate.This study investigated cloud fractions and cloud radiative effects(CREs)over SC and SCS simulated by CMIP6 atmospheric models.Remarkable differences in cloud-radiation characteristics appeared over these two regions.In observations,considerable amounts of low-middle level clouds and cloud radiative cooling effect appeared over SC.In contrast,high clouds prevailed over SCS,where longwave and shortwave CREs offset each other,resulting in a weaker net cloud radiative effect(NCRE).The models underestimated NCRE over SC mainly due to weaker shortwave CRE and less cloud fractions.Conversely,most models overestimated NCRE over SCS because of stronger shortwave CRE and weaker longwave CRE.Regional CREs were closely linked to their dominant cloud fractions.Both observations and simulations showed a negative spatial correlation between total(low)cloud fraction and shortwave CRE over SC,especially in winter,and exhibited a positive correlation between high cloud fraction and longwave CRE over these two regions.Compared with SCS,most models overestimated the spatial correlation between low(high)cloud fraction and SWCRE(LWCRE)over SC,with larger bias ranges among models,indicating the exaggerated cloud radiative cooling(warming)effect caused by low(high)clouds.Moreover,most models struggled to describe regional ascent and its connection with CREs over SC while they can better reproduce these connections over SCS.This study further suggests that reasonable circulation conditions are crucial to simulating well cloud-radiation characteristics over the East Asian regions.展开更多
Networking,storage,and hardware are just a few of the virtual computing resources that the infrastruc-ture service model offers,depending on what the client needs.One essential aspect of cloud computing that improves ...Networking,storage,and hardware are just a few of the virtual computing resources that the infrastruc-ture service model offers,depending on what the client needs.One essential aspect of cloud computing that improves resource allocation techniques is host load prediction.This difficulty means that hardware resource allocation in cloud computing still results in hosting initialization issues,which add several minutes to response times.To solve this issue and accurately predict cloud capacity,cloud data centers use prediction algorithms.This permits dynamic cloud scalability while maintaining superior service quality.For host prediction,we therefore present a hybrid convolutional neural network long with short-term memory model in this work.First,the suggested hybrid model is input is subjected to the vector auto regression technique.The data in many variables that,prior to analysis,has been filtered to eliminate linear interdependencies.After that,the persisting data are processed and sent into the convolutional neural network layer,which gathers intricate details about the utilization of each virtual machine and central processing unit.The next step involves the use of extended short-term memory,which is suitable for representing the temporal information of irregular trends in time series components.The key to the entire process is that we used the most appropriate activation function for this type of model a scaled polynomial constant unit.Cloud systems require accurate prediction due to the increasing degrees of unpredictability in data centers.Because of this,two actual load traces were used in this study’s assessment of the performance.An example of the load trace is in the typical dispersed system.In comparison to CNN,VAR-GRU,VAR-MLP,ARIMA-LSTM,and other models,the experiment results demonstrate that our suggested approach offers state-of-the-art performance with higher accuracy in both datasets.展开更多
Few-shot point cloud 3D object detection(FS3D)aims to identify and locate objects of novel classes within point clouds using knowledge acquired from annotated base classes and a minimal number of samples from the nove...Few-shot point cloud 3D object detection(FS3D)aims to identify and locate objects of novel classes within point clouds using knowledge acquired from annotated base classes and a minimal number of samples from the novel classes.Due to imbalanced training data,existing FS3D methods based on fully supervised learning can lead to overfitting toward base classes,which impairs the network’s ability to generalize knowledge learned from base classes to novel classes and also prevents the network from extracting distinctive foreground and background representations for novel class objects.To address these issues,this thesis proposes a category-agnostic contrastive learning approach,enhancing the generalization and identification abilities for almost unseen categories through the construction of pseudo-labels and positive-negative sample pairs unrelated to specific classes.Firstly,this thesis designs a proposal-wise context contrastive module(CCM).By reducing the distance between foreground point features and increasing the distance between foreground and background point features within a region proposal,CCM aids the network in extracting more discriminative foreground and background feature representations without reliance on categorical annotations.Secondly,this thesis utilizes a geometric contrastive module(GCM),which enhances the network’s geometric perception capability by employing contrastive learning on the foreground point features associated with various basic geometric components,such as edges,corners,and surfaces,thereby enabling these geometric components to exhibit more distinguishable representations.This thesis also combines category-aware contrastive learning with former modules to maintain categorical distinctiveness.Extensive experimental results on FS-SUNRGBD and FS-ScanNet datasets demonstrate the effectiveness of this method with average precision exceeding the baseline by up to 8%.展开更多
The widespread adoption of cloud computing has underscored the critical importance of efficient resource allocation and management, particularly in task scheduling, which involves assigning tasks to computing resource...The widespread adoption of cloud computing has underscored the critical importance of efficient resource allocation and management, particularly in task scheduling, which involves assigning tasks to computing resources for optimized resource utilization. Several meta-heuristic algorithms have shown effectiveness in task scheduling, among which the relatively recent Willow Catkin Optimization (WCO) algorithm has demonstrated potential, albeit with apparent needs for enhanced global search capability and convergence speed. To address these limitations of WCO in cloud computing task scheduling, this paper introduces an improved version termed the Advanced Willow Catkin Optimization (AWCO) algorithm. AWCO enhances the algorithm’s performance by augmenting its global search capability through a quasi-opposition-based learning strategy and accelerating its convergence speed via sinusoidal mapping. A comprehensive evaluation utilizing the CEC2014 benchmark suite, comprising 30 test functions, demonstrates that AWCO achieves superior optimization outcomes, surpassing conventional WCO and a range of established meta-heuristics. The proposed algorithm also considers trade-offs among the cost, makespan, and load balancing objectives. Experimental results of AWCO are compared with those obtained using the other meta-heuristics, illustrating that the proposed algorithm provides superior performance in task scheduling. The method offers a robust foundation for enhancing the utilization of cloud computing resources in the domain of task scheduling within a cloud computing environment.展开更多
Anti-jamming performance evaluation has recently received significant attention. For Link-16, the anti-jamming performance evaluation and selection of the optimal anti-jamming technologies are urgent problems to be so...Anti-jamming performance evaluation has recently received significant attention. For Link-16, the anti-jamming performance evaluation and selection of the optimal anti-jamming technologies are urgent problems to be solved. A comprehensive evaluation method is proposed, which combines grey relational analysis (GRA) and cloud model, to evaluate the anti-jamming performances of Link-16. Firstly, on the basis of establishing the anti-jamming performance evaluation indicator system of Link-16, the linear combination of analytic hierarchy process(AHP) and entropy weight method (EWM) are used to calculate the combined weight. Secondly, the qualitative and quantitative concept transformation model, i.e., the cloud model, is introduced to evaluate the anti-jamming abilities of Link-16 under each jamming scheme. In addition, GRA calculates the correlation degree between evaluation indicators and the anti-jamming performance of Link-16, and assesses the best anti-jamming technology. Finally, simulation results prove that the proposed evaluation model can achieve the objective of feasible and practical evaluation, which opens up a novel way for the research of anti-jamming performance evaluations of Link-16.展开更多
A basic procedure for transforming readable data into encoded forms is encryption, which ensures security when the right decryption keys are used. Hadoop is susceptible to possible cyber-attacks because it lacks built...A basic procedure for transforming readable data into encoded forms is encryption, which ensures security when the right decryption keys are used. Hadoop is susceptible to possible cyber-attacks because it lacks built-in security measures, even though it can effectively handle and store enormous datasets using the Hadoop Distributed File System (HDFS). The increasing number of data breaches emphasizes how urgently creative encryption techniques are needed in cloud-based big data settings. This paper presents Adaptive Attribute-Based Honey Encryption (AABHE), a state-of-the-art technique that combines honey encryption with Ciphertext-Policy Attribute-Based Encryption (CP-ABE) to provide improved data security. Even if intercepted, AABHE makes sure that sensitive data cannot be accessed by unauthorized parties. With a focus on protecting huge files in HDFS, the suggested approach achieves 98% security robustness and 95% encryption efficiency, outperforming other encryption methods including Ciphertext-Policy Attribute-Based Encryption (CP-ABE), Key-Policy Attribute-Based Encryption (KB-ABE), and Advanced Encryption Standard combined with Attribute-Based Encryption (AES+ABE). By fixing Hadoop’s security flaws, AABHE fortifies its protections against data breaches and enhances Hadoop’s dependability as a platform for processing and storing massive amounts of data.展开更多
Rock discontinuities control rock mechanical behaviors and significantly influence the stability of rock masses.However,existing discontinuity mapping algorithms are susceptible to noise,and the calculation results ca...Rock discontinuities control rock mechanical behaviors and significantly influence the stability of rock masses.However,existing discontinuity mapping algorithms are susceptible to noise,and the calculation results cannot be fed back to users timely.To address this issue,we proposed a human-machine interaction(HMI)method for discontinuity mapping.Users can help the algorithm identify the noise and make real-time result judgments and parameter adjustments.For this,a regular cube was selected to illustrate the workflows:(1)point cloud was acquired using remote sensing;(2)the HMI method was employed to select reference points and angle thresholds to detect group discontinuity;(3)individual discontinuities were extracted from the group discontinuity using a density-based cluster algorithm;and(4)the orientation of each discontinuity was measured based on a plane fitting algorithm.The method was applied to a well-studied highway road cut and a complex natural slope.The consistency of the computational results with field measurements demonstrates its good accuracy,and the average error in the dip direction and dip angle for both cases was less than 3.Finally,the computational time of the proposed method was compared with two other popular algorithms,and the reduction in computational time by tens of times proves its high computational efficiency.This method provides geologists and geological engineers with a new idea to map rapidly and accurately rock structures under large amounts of noises or unclear features.展开更多
Magnetic resonance imaging(MRI)plays an important role in medical diagnosis,generating petabytes of image data annually in large hospitals.This voluminous data stream requires a significant amount of network bandwidth...Magnetic resonance imaging(MRI)plays an important role in medical diagnosis,generating petabytes of image data annually in large hospitals.This voluminous data stream requires a significant amount of network bandwidth and extensive storage infrastructure.Additionally,local data processing demands substantial manpower and hardware investments.Data isolation across different healthcare institutions hinders crossinstitutional collaboration in clinics and research.In this work,we anticipate an innovative MRI system and its four generations that integrate emerging distributed cloud computing,6G bandwidth,edge computing,federated learning,and blockchain technology.This system is called Cloud-MRI,aiming at solving the problems of MRI data storage security,transmission speed,artificial intelligence(AI)algorithm maintenance,hardware upgrading,and collaborative work.The workflow commences with the transformation of k-space raw data into the standardized Imaging Society for Magnetic Resonance in Medicine Raw Data(ISMRMRD)format.Then,the data are uploaded to the cloud or edge nodes for fast image reconstruction,neural network training,and automatic analysis.Then,the outcomes are seamlessly transmitted to clinics or research institutes for diagnosis and other services.The Cloud-MRI system will save the raw imaging data,reduce the risk of data loss,facilitate inter-institutional medical collaboration,and finally improve diagnostic accuracy and work efficiency.展开更多
Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to est...Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to establish relationships between distant but relevant points. To overcome the limitation of local spatial attention, we propose a point content-based Transformer architecture, called PointConT for short. It exploits the locality of points in the feature space(content-based), which clusters the sampled points with similar features into the same class and computes the self-attention within each class, thus enabling an effective trade-off between capturing long-range dependencies and computational complexity. We further introduce an inception feature aggregator for point cloud classification, which uses parallel structures to aggregate high-frequency and low-frequency information in each branch separately. Extensive experiments show that our PointConT model achieves a remarkable performance on point cloud shape classification. Especially, our method exhibits 90.3% Top-1 accuracy on the hardest setting of ScanObjectN N. Source code of this paper is available at https://github.com/yahuiliu99/PointC onT.展开更多
The Access control scheme is an effective method to protect user data privacy.The access control scheme based on blockchain and ciphertext policy attribute encryption(CP–ABE)can solve the problems of single—point of...The Access control scheme is an effective method to protect user data privacy.The access control scheme based on blockchain and ciphertext policy attribute encryption(CP–ABE)can solve the problems of single—point of failure and lack of trust in the centralized system.However,it also brings new problems to the health information in the cloud storage environment,such as attribute leakage,low consensus efficiency,complex permission updates,and so on.This paper proposes an access control scheme with fine-grained attribute revocation,keyword search,and traceability of the attribute private key distribution process.Blockchain technology tracks the authorization of attribute private keys.The credit scoring method improves the Raft protocol in consensus efficiency.Besides,the interplanetary file system(IPFS)addresses the capacity deficit of blockchain.Under the premise of hiding policy,the research proposes a fine-grained access control method based on users,user attributes,and file structure.It optimizes the data-sharing mode.At the same time,Proxy Re-Encryption(PRE)technology is used to update the access rights.The proposed scheme proved to be secure.Comparative analysis and experimental results show that the proposed scheme has higher efficiency and more functions.It can meet the needs of medical institutions.展开更多
基金supported by the Institute of Information&communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(RS-2024-00399401,Development of Quantum-Safe Infrastructure Migration and Quantum Security Verification Technologies).
文摘With the rise of remote collaboration,the demand for advanced storage and collaboration tools has rapidly increased.However,traditional collaboration tools primarily rely on access control,leaving data stored on cloud servers vulnerable due to insufficient encryption.This paper introduces a novel mechanism that encrypts data in‘bundle’units,designed to meet the dual requirements of efficiency and security for frequently updated collaborative data.Each bundle includes updated information,allowing only the updated portions to be reencrypted when changes occur.The encryption method proposed in this paper addresses the inefficiencies of traditional encryption modes,such as Cipher Block Chaining(CBC)and Counter(CTR),which require decrypting and re-encrypting the entire dataset whenever updates occur.The proposed method leverages update-specific information embedded within data bundles and metadata that maps the relationship between these bundles and the plaintext data.By utilizing this information,the method accurately identifies the modified portions and applies algorithms to selectively re-encrypt only those sections.This approach significantly enhances the efficiency of data updates while maintaining high performance,particularly in large-scale data environments.To validate this approach,we conducted experiments measuring execution time as both the size of the modified data and the total dataset size varied.Results show that the proposed method significantly outperforms CBC and CTR modes in execution speed,with greater performance gains as data size increases.Additionally,our security evaluation confirms that this method provides robust protection against both passive and active attacks.
文摘The increasing use of cloud-based devices has reached the critical point of cybersecurity and unwanted network traffic.Cloud environments pose significant challenges in maintaining privacy and security.Global approaches,such as IDS,have been developed to tackle these issues.However,most conventional Intrusion Detection System(IDS)models struggle with unseen cyberattacks and complex high-dimensional data.In fact,this paper introduces the idea of a novel distributed explainable and heterogeneous transformer-based intrusion detection system,named INTRUMER,which offers balanced accuracy,reliability,and security in cloud settings bymultiplemodulesworking together within it.The traffic captured from cloud devices is first passed to the TC&TM module in which the Falcon Optimization Algorithm optimizes the feature selection process,and Naie Bayes algorithm performs the classification of features.The selected features are classified further and are forwarded to the Heterogeneous Attention Transformer(HAT)module.In this module,the contextual interactions of the network traffic are taken into account to classify them as normal or malicious traffic.The classified results are further analyzed by the Explainable Prevention Module(XPM)to ensure trustworthiness by providing interpretable decisions.With the explanations fromthe classifier,emergency alarms are transmitted to nearby IDSmodules,servers,and underlying cloud devices for the enhancement of preventive measures.Extensive experiments on benchmark IDS datasets CICIDS 2017,Honeypots,and NSL-KDD were conducted to demonstrate the efficiency of the INTRUMER model in detecting network trafficwith high accuracy for different types.Theproposedmodel outperforms state-of-the-art approaches,obtaining better performance metrics:98.7%accuracy,97.5%precision,96.3%recall,and 97.8%F1-score.Such results validate the robustness and effectiveness of INTRUMER in securing diverse cloud environments against sophisticated cyber threats.
文摘Cloud detection is a critical preprocessing step in remote sensing image processing, as the presence of clouds significantly affects the accuracy of remote sensing data and limits its applicability across various domains. This study presents an enhanced cloud detection method based on the U-Net architecture, designed to address the challenges of multi-scale cloud features and long-range dependencies inherent in remote sensing imagery. A Multi-Scale Dilated Attention (MSDA) module is introduced to effectively integrate multi-scale information and model long-range dependencies across different scales, enhancing the model’s ability to detect clouds of varying sizes. Additionally, a Multi-Head Self-Attention (MHSA) mechanism is incorporated to improve the model’s capacity for capturing finer details, particularly in distinguishing thin clouds from surface features. A multi-path supervision mechanism is also devised to ensure the model learns cloud features at multiple scales, further boosting the accuracy and robustness of cloud mask generation. Experimental results demonstrate that the enhanced model achieves superior performance compared to other benchmarked methods in complex scenarios. It significantly improves cloud detection accuracy, highlighting its strong potential for practical applications in cloud detection tasks.
基金Shanxi Province Higher Education Science and Technology Innovation Fund Project(2022-676)Shanxi Soft Science Program Research Fund Project(2016041008-6)。
文摘In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.
文摘The ease of accessing a virtually unlimited pool of resources makes Infrastructure as a Service (IaaS) clouds an ideal platform for running data-intensive workflow applications comprising hundreds of computational tasks. However, executing scientific workflows in IaaS cloud environments poses significant challenges due to conflicting objectives, such as minimizing execution time (makespan) and reducing resource utilization costs. This study responds to the increasing need for efficient and adaptable optimization solutions in dynamic and complex environments, which are critical for meeting the evolving demands of modern users and applications. This study presents an innovative multi-objective approach for scheduling scientific workflows in IaaS cloud environments. The proposed algorithm, MOS-MWMC, aims to minimize total execution time (makespan) and resource utilization costs by leveraging key features of virtual machine instances, such as a high number of cores and fast local SSD storage. By integrating realistic simulations based on the WRENCH framework, the method effectively dimensions the cloud infrastructure and optimizes resource usage. Experimental results highlight the superiority of MOS-MWMC compared to benchmark algorithms HEFT and Max-Min. The Pareto fronts obtained for the CyberShake, Epigenomics, and Montage workflows demonstrate closer proximity to the optimal front, confirming the algorithm’s ability to balance conflicting objectives. This study contributes to optimizing scientific workflows in complex environments by providing solutions tailored to specific user needs while minimizing costs and execution times.
基金supported by the National Natural Science Foundation of China(Grant No.42230601).
文摘The impact of aerosols on clouds,which remains one of the largest aspects of uncertainty in current weather forecasting and climate change research,can be influenced by various factors,such as the underlying surface type,cloud type,cloud phase,and aerosol type.To explore the impact of different underlying surfaces on the effect of aerosols on cloud development,this study focused on the Yangtze River Delta(YRD)and its offshore regions(YRD sea)for a comparative analysis based on multi-source satellite data,while also considering the variations in cloud type and cloud phase.The results show lower cloud-top height and depth of single-layer clouds over the ocean than land,and higher liquid cloud in spring over the ocean.Aerosols are found to enhance the cumulus cloud depth through microphysical effects,which is particularly evident over the ocean.Aerosols are also found to decrease the cloud droplet effective radius in the ocean region and during the mature stage of cloud development in the land region,while opposite results are found during the early stage of cloud development in the land region.The quantitative results indicate that the indirect effect is positive(0.05)in the land region at relatively high cloud water path,which is smaller than that in the ocean region(0.11).The findings deepen our understanding of the influence aerosols on cloud development and the mechanisms involved,which could then be applied to improve the ability to simulate cloud-associated weather processes.
基金Guangdong Major Project of Basic and Applied Basic Research(2020B0301030004)National Natural Science Foundation of China(72293604,42275026)Open Grants of the State Key Laboratory of Severe Weather(2023LASW-B09)。
文摘Pronounced climatic differences occur over subtropical South China(SC)and tropical South China Sea(SCS)and understanding the key cloud-radiation characteristics is essential to simulating East Asian climate.This study investigated cloud fractions and cloud radiative effects(CREs)over SC and SCS simulated by CMIP6 atmospheric models.Remarkable differences in cloud-radiation characteristics appeared over these two regions.In observations,considerable amounts of low-middle level clouds and cloud radiative cooling effect appeared over SC.In contrast,high clouds prevailed over SCS,where longwave and shortwave CREs offset each other,resulting in a weaker net cloud radiative effect(NCRE).The models underestimated NCRE over SC mainly due to weaker shortwave CRE and less cloud fractions.Conversely,most models overestimated NCRE over SCS because of stronger shortwave CRE and weaker longwave CRE.Regional CREs were closely linked to their dominant cloud fractions.Both observations and simulations showed a negative spatial correlation between total(low)cloud fraction and shortwave CRE over SC,especially in winter,and exhibited a positive correlation between high cloud fraction and longwave CRE over these two regions.Compared with SCS,most models overestimated the spatial correlation between low(high)cloud fraction and SWCRE(LWCRE)over SC,with larger bias ranges among models,indicating the exaggerated cloud radiative cooling(warming)effect caused by low(high)clouds.Moreover,most models struggled to describe regional ascent and its connection with CREs over SC while they can better reproduce these connections over SCS.This study further suggests that reasonable circulation conditions are crucial to simulating well cloud-radiation characteristics over the East Asian regions.
基金funded by Multimedia University(Ref:MMU/RMC/PostDoc/NEW/2024/9804).
文摘Networking,storage,and hardware are just a few of the virtual computing resources that the infrastruc-ture service model offers,depending on what the client needs.One essential aspect of cloud computing that improves resource allocation techniques is host load prediction.This difficulty means that hardware resource allocation in cloud computing still results in hosting initialization issues,which add several minutes to response times.To solve this issue and accurately predict cloud capacity,cloud data centers use prediction algorithms.This permits dynamic cloud scalability while maintaining superior service quality.For host prediction,we therefore present a hybrid convolutional neural network long with short-term memory model in this work.First,the suggested hybrid model is input is subjected to the vector auto regression technique.The data in many variables that,prior to analysis,has been filtered to eliminate linear interdependencies.After that,the persisting data are processed and sent into the convolutional neural network layer,which gathers intricate details about the utilization of each virtual machine and central processing unit.The next step involves the use of extended short-term memory,which is suitable for representing the temporal information of irregular trends in time series components.The key to the entire process is that we used the most appropriate activation function for this type of model a scaled polynomial constant unit.Cloud systems require accurate prediction due to the increasing degrees of unpredictability in data centers.Because of this,two actual load traces were used in this study’s assessment of the performance.An example of the load trace is in the typical dispersed system.In comparison to CNN,VAR-GRU,VAR-MLP,ARIMA-LSTM,and other models,the experiment results demonstrate that our suggested approach offers state-of-the-art performance with higher accuracy in both datasets.
文摘Few-shot point cloud 3D object detection(FS3D)aims to identify and locate objects of novel classes within point clouds using knowledge acquired from annotated base classes and a minimal number of samples from the novel classes.Due to imbalanced training data,existing FS3D methods based on fully supervised learning can lead to overfitting toward base classes,which impairs the network’s ability to generalize knowledge learned from base classes to novel classes and also prevents the network from extracting distinctive foreground and background representations for novel class objects.To address these issues,this thesis proposes a category-agnostic contrastive learning approach,enhancing the generalization and identification abilities for almost unseen categories through the construction of pseudo-labels and positive-negative sample pairs unrelated to specific classes.Firstly,this thesis designs a proposal-wise context contrastive module(CCM).By reducing the distance between foreground point features and increasing the distance between foreground and background point features within a region proposal,CCM aids the network in extracting more discriminative foreground and background feature representations without reliance on categorical annotations.Secondly,this thesis utilizes a geometric contrastive module(GCM),which enhances the network’s geometric perception capability by employing contrastive learning on the foreground point features associated with various basic geometric components,such as edges,corners,and surfaces,thereby enabling these geometric components to exhibit more distinguishable representations.This thesis also combines category-aware contrastive learning with former modules to maintain categorical distinctiveness.Extensive experimental results on FS-SUNRGBD and FS-ScanNet datasets demonstrate the effectiveness of this method with average precision exceeding the baseline by up to 8%.
文摘The widespread adoption of cloud computing has underscored the critical importance of efficient resource allocation and management, particularly in task scheduling, which involves assigning tasks to computing resources for optimized resource utilization. Several meta-heuristic algorithms have shown effectiveness in task scheduling, among which the relatively recent Willow Catkin Optimization (WCO) algorithm has demonstrated potential, albeit with apparent needs for enhanced global search capability and convergence speed. To address these limitations of WCO in cloud computing task scheduling, this paper introduces an improved version termed the Advanced Willow Catkin Optimization (AWCO) algorithm. AWCO enhances the algorithm’s performance by augmenting its global search capability through a quasi-opposition-based learning strategy and accelerating its convergence speed via sinusoidal mapping. A comprehensive evaluation utilizing the CEC2014 benchmark suite, comprising 30 test functions, demonstrates that AWCO achieves superior optimization outcomes, surpassing conventional WCO and a range of established meta-heuristics. The proposed algorithm also considers trade-offs among the cost, makespan, and load balancing objectives. Experimental results of AWCO are compared with those obtained using the other meta-heuristics, illustrating that the proposed algorithm provides superior performance in task scheduling. The method offers a robust foundation for enhancing the utilization of cloud computing resources in the domain of task scheduling within a cloud computing environment.
基金Heilongjiang Provincial Natural Science Foundation of China (LH2021F009)。
文摘Anti-jamming performance evaluation has recently received significant attention. For Link-16, the anti-jamming performance evaluation and selection of the optimal anti-jamming technologies are urgent problems to be solved. A comprehensive evaluation method is proposed, which combines grey relational analysis (GRA) and cloud model, to evaluate the anti-jamming performances of Link-16. Firstly, on the basis of establishing the anti-jamming performance evaluation indicator system of Link-16, the linear combination of analytic hierarchy process(AHP) and entropy weight method (EWM) are used to calculate the combined weight. Secondly, the qualitative and quantitative concept transformation model, i.e., the cloud model, is introduced to evaluate the anti-jamming abilities of Link-16 under each jamming scheme. In addition, GRA calculates the correlation degree between evaluation indicators and the anti-jamming performance of Link-16, and assesses the best anti-jamming technology. Finally, simulation results prove that the proposed evaluation model can achieve the objective of feasible and practical evaluation, which opens up a novel way for the research of anti-jamming performance evaluations of Link-16.
基金funded by Princess Nourah bint Abdulrahman UniversityResearchers Supporting Project number (PNURSP2024R408), Princess Nourah bint AbdulrahmanUniversity, Riyadh, Saudi Arabia.
文摘A basic procedure for transforming readable data into encoded forms is encryption, which ensures security when the right decryption keys are used. Hadoop is susceptible to possible cyber-attacks because it lacks built-in security measures, even though it can effectively handle and store enormous datasets using the Hadoop Distributed File System (HDFS). The increasing number of data breaches emphasizes how urgently creative encryption techniques are needed in cloud-based big data settings. This paper presents Adaptive Attribute-Based Honey Encryption (AABHE), a state-of-the-art technique that combines honey encryption with Ciphertext-Policy Attribute-Based Encryption (CP-ABE) to provide improved data security. Even if intercepted, AABHE makes sure that sensitive data cannot be accessed by unauthorized parties. With a focus on protecting huge files in HDFS, the suggested approach achieves 98% security robustness and 95% encryption efficiency, outperforming other encryption methods including Ciphertext-Policy Attribute-Based Encryption (CP-ABE), Key-Policy Attribute-Based Encryption (KB-ABE), and Advanced Encryption Standard combined with Attribute-Based Encryption (AES+ABE). By fixing Hadoop’s security flaws, AABHE fortifies its protections against data breaches and enhances Hadoop’s dependability as a platform for processing and storing massive amounts of data.
基金supported by the National Key R&D Program of China(No.2023YFC3081200)the National Natural Science Foundation of China(No.42077264)the Scientific Research Project of PowerChina Huadong Engineering Corporation Limited(HDEC-2022-0301).
文摘Rock discontinuities control rock mechanical behaviors and significantly influence the stability of rock masses.However,existing discontinuity mapping algorithms are susceptible to noise,and the calculation results cannot be fed back to users timely.To address this issue,we proposed a human-machine interaction(HMI)method for discontinuity mapping.Users can help the algorithm identify the noise and make real-time result judgments and parameter adjustments.For this,a regular cube was selected to illustrate the workflows:(1)point cloud was acquired using remote sensing;(2)the HMI method was employed to select reference points and angle thresholds to detect group discontinuity;(3)individual discontinuities were extracted from the group discontinuity using a density-based cluster algorithm;and(4)the orientation of each discontinuity was measured based on a plane fitting algorithm.The method was applied to a well-studied highway road cut and a complex natural slope.The consistency of the computational results with field measurements demonstrates its good accuracy,and the average error in the dip direction and dip angle for both cases was less than 3.Finally,the computational time of the proposed method was compared with two other popular algorithms,and the reduction in computational time by tens of times proves its high computational efficiency.This method provides geologists and geological engineers with a new idea to map rapidly and accurately rock structures under large amounts of noises or unclear features.
基金supported by the National Natural Science Foundation of China(62122064,62331021,62371410)the Natural Science Foundation of Fujian Province of China(2023J02005 and 2021J011184)+1 种基金the President Fund of Xiamen University(20720220063)the Nanqiang Outstanding Talents Program of Xiamen University.
文摘Magnetic resonance imaging(MRI)plays an important role in medical diagnosis,generating petabytes of image data annually in large hospitals.This voluminous data stream requires a significant amount of network bandwidth and extensive storage infrastructure.Additionally,local data processing demands substantial manpower and hardware investments.Data isolation across different healthcare institutions hinders crossinstitutional collaboration in clinics and research.In this work,we anticipate an innovative MRI system and its four generations that integrate emerging distributed cloud computing,6G bandwidth,edge computing,federated learning,and blockchain technology.This system is called Cloud-MRI,aiming at solving the problems of MRI data storage security,transmission speed,artificial intelligence(AI)algorithm maintenance,hardware upgrading,and collaborative work.The workflow commences with the transformation of k-space raw data into the standardized Imaging Society for Magnetic Resonance in Medicine Raw Data(ISMRMRD)format.Then,the data are uploaded to the cloud or edge nodes for fast image reconstruction,neural network training,and automatic analysis.Then,the outcomes are seamlessly transmitted to clinics or research institutes for diagnosis and other services.The Cloud-MRI system will save the raw imaging data,reduce the risk of data loss,facilitate inter-institutional medical collaboration,and finally improve diagnostic accuracy and work efficiency.
基金supported in part by the Nationa Natural Science Foundation of China (61876011)the National Key Research and Development Program of China (2022YFB4703700)+1 种基金the Key Research and Development Program 2020 of Guangzhou (202007050002)the Key-Area Research and Development Program of Guangdong Province (2020B090921003)。
文摘Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to establish relationships between distant but relevant points. To overcome the limitation of local spatial attention, we propose a point content-based Transformer architecture, called PointConT for short. It exploits the locality of points in the feature space(content-based), which clusters the sampled points with similar features into the same class and computes the self-attention within each class, thus enabling an effective trade-off between capturing long-range dependencies and computational complexity. We further introduce an inception feature aggregator for point cloud classification, which uses parallel structures to aggregate high-frequency and low-frequency information in each branch separately. Extensive experiments show that our PointConT model achieves a remarkable performance on point cloud shape classification. Especially, our method exhibits 90.3% Top-1 accuracy on the hardest setting of ScanObjectN N. Source code of this paper is available at https://github.com/yahuiliu99/PointC onT.
基金This research was funded by the National Natural Science Foundation of China,Grant Number 62162039the Shaanxi Provincial Key R&D Program,China with Grant Number 2020GY-041.
文摘The Access control scheme is an effective method to protect user data privacy.The access control scheme based on blockchain and ciphertext policy attribute encryption(CP–ABE)can solve the problems of single—point of failure and lack of trust in the centralized system.However,it also brings new problems to the health information in the cloud storage environment,such as attribute leakage,low consensus efficiency,complex permission updates,and so on.This paper proposes an access control scheme with fine-grained attribute revocation,keyword search,and traceability of the attribute private key distribution process.Blockchain technology tracks the authorization of attribute private keys.The credit scoring method improves the Raft protocol in consensus efficiency.Besides,the interplanetary file system(IPFS)addresses the capacity deficit of blockchain.Under the premise of hiding policy,the research proposes a fine-grained access control method based on users,user attributes,and file structure.It optimizes the data-sharing mode.At the same time,Proxy Re-Encryption(PRE)technology is used to update the access rights.The proposed scheme proved to be secure.Comparative analysis and experimental results show that the proposed scheme has higher efficiency and more functions.It can meet the needs of medical institutions.