A global convergent algorithm is proposed to solve bilevel linear fractional-linear programming, which is a special class of bilevel programming. In our algorithm, replacing the lower level problem by its dual gap equ...A global convergent algorithm is proposed to solve bilevel linear fractional-linear programming, which is a special class of bilevel programming. In our algorithm, replacing the lower level problem by its dual gap equaling to zero, the bilevel linear fractional-linear programming is transformed into a traditional sin- gle level programming problem, which can be transformed into a series of linear fractional programming problem. Thus, the modi- fied convex simplex method is used to solve the infinite linear fractional programming to obtain the global convergent solution of the original bilevel linear fractional-linear programming. Finally, an example demonstrates the feasibility of the proposed algorithm.展开更多
The paper presents an approach for avoiding and minimizing the complementary pivots in a simplex based solution method for a quadratic programming problem. The linearization of the problem is slightly changed so that ...The paper presents an approach for avoiding and minimizing the complementary pivots in a simplex based solution method for a quadratic programming problem. The linearization of the problem is slightly changed so that the simplex or interior point methods can solve with full speed. This is a big advantage as a complementary pivot algorithm will take roughly eight times as longer time to solve a quadratic program than the full speed simplex-method solving a linear problem of the same size. The strategy of the approach is in the assumption that the solution of the quadratic programming problem is near the feasible point closest to the stationary point assuming no constraints.展开更多
This paper presents a new heuristic to linearise the convex quadratic programming problem. The usual Karush-Kuhn-Tucker conditions are used but in this case a linear objective function is also formulated from the set ...This paper presents a new heuristic to linearise the convex quadratic programming problem. The usual Karush-Kuhn-Tucker conditions are used but in this case a linear objective function is also formulated from the set of linear equations and complementarity slackness conditions. An unboundedness challenge arises in the proposed formulation and this challenge is alleviated by construction of an additional constraint. The formulated linear programming problem can be solved efficiently by the available simplex or interior point algorithms. There is no restricted base entry in this new formulation. Some computational experiments were carried out and results are provided.展开更多
In this paper, the nonlinear programming problem with quasimonotonic ( both quasiconvex and quasiconcave )objective function and linear constraints is considered. With the decomposition theorem of polyhedral sets, t...In this paper, the nonlinear programming problem with quasimonotonic ( both quasiconvex and quasiconcave )objective function and linear constraints is considered. With the decomposition theorem of polyhedral sets, the structure of optimal solution set for the programming problem is depicted. Based on a simplified version of the convex simplex method, the uniqueness condition of optimal solution and the computational procedures to determine all optimal solutions are given, if the uniqueness condition is not satisfied. An illustrative example is also presented.展开更多
The optimization problem is considered in which the objective function is pseudolinear(both pseudoconvex and pseudoconcave) and the constraints are linear. The general expression for the optimal solutions to the pro...The optimization problem is considered in which the objective function is pseudolinear(both pseudoconvex and pseudoconcave) and the constraints are linear. The general expression for the optimal solutions to the problem is derived with the representation theorem of polyhedral sets, and the uniqueness condition of the optimal solution and the computational procedures to determine all optimal solutions (if the uniqueness condition is not satisfied ) are provided. Finally, an illustrative example is also given.展开更多
With the expression theorem of convex polyhedron, this paper gives the general expression for the solutions in standard linear programming problems. And the calculation procedures in determining the optimal solutions ...With the expression theorem of convex polyhedron, this paper gives the general expression for the solutions in standard linear programming problems. And the calculation procedures in determining the optimal solutions are also given.展开更多
基金supported by the National Natural Science Foundation of China(70771080)the Special Fund for Basic Scientific Research of Central Colleges+2 种基金China University of Geosciences(Wuhan) (CUG090113)the Research Foundation for Outstanding Young TeachersChina University of Geosciences(Wuhan)(CUGQNW0801)
文摘A global convergent algorithm is proposed to solve bilevel linear fractional-linear programming, which is a special class of bilevel programming. In our algorithm, replacing the lower level problem by its dual gap equaling to zero, the bilevel linear fractional-linear programming is transformed into a traditional sin- gle level programming problem, which can be transformed into a series of linear fractional programming problem. Thus, the modi- fied convex simplex method is used to solve the infinite linear fractional programming to obtain the global convergent solution of the original bilevel linear fractional-linear programming. Finally, an example demonstrates the feasibility of the proposed algorithm.
文摘The paper presents an approach for avoiding and minimizing the complementary pivots in a simplex based solution method for a quadratic programming problem. The linearization of the problem is slightly changed so that the simplex or interior point methods can solve with full speed. This is a big advantage as a complementary pivot algorithm will take roughly eight times as longer time to solve a quadratic program than the full speed simplex-method solving a linear problem of the same size. The strategy of the approach is in the assumption that the solution of the quadratic programming problem is near the feasible point closest to the stationary point assuming no constraints.
文摘This paper presents a new heuristic to linearise the convex quadratic programming problem. The usual Karush-Kuhn-Tucker conditions are used but in this case a linear objective function is also formulated from the set of linear equations and complementarity slackness conditions. An unboundedness challenge arises in the proposed formulation and this challenge is alleviated by construction of an additional constraint. The formulated linear programming problem can be solved efficiently by the available simplex or interior point algorithms. There is no restricted base entry in this new formulation. Some computational experiments were carried out and results are provided.
基金Supported by the Research Foundation of Jinan University(04SKZD01).
文摘In this paper, the nonlinear programming problem with quasimonotonic ( both quasiconvex and quasiconcave )objective function and linear constraints is considered. With the decomposition theorem of polyhedral sets, the structure of optimal solution set for the programming problem is depicted. Based on a simplified version of the convex simplex method, the uniqueness condition of optimal solution and the computational procedures to determine all optimal solutions are given, if the uniqueness condition is not satisfied. An illustrative example is also presented.
文摘The optimization problem is considered in which the objective function is pseudolinear(both pseudoconvex and pseudoconcave) and the constraints are linear. The general expression for the optimal solutions to the problem is derived with the representation theorem of polyhedral sets, and the uniqueness condition of the optimal solution and the computational procedures to determine all optimal solutions (if the uniqueness condition is not satisfied ) are provided. Finally, an illustrative example is also given.
文摘With the expression theorem of convex polyhedron, this paper gives the general expression for the solutions in standard linear programming problems. And the calculation procedures in determining the optimal solutions are also given.